Subnetwork
A subnetwork, or subnet, is a logically visible subdivision of an IP network.[1] The practice of dividing a network into two or more networks is called subnetting.
All computers that belong to a subnet are addressed with a common, identical, most-significant bit-group in their IP address. This results in the logical division of an IP address into two fields, a network or routing prefix and the rest field or host identifier. The rest field is an identifier for a specific host or network interface.
The routing prefix is expressed in CIDR notation. It is written as the first address of a network, followed by a slash character (/), and ending with the bit-length of the prefix. For example, 192.168.1.0/24 is the prefix of the Internet Protocol Version 4 network starting at the given address, having 24 bits allocated for the network prefix, and the remaining 8 bits reserved for host addressing. The IPv6 address specification 2001:db8::/32 is a large address block with 296 addresses, having a 32-bit routing prefix. In IPv4 the routing prefix is also specified in the form of the subnet mask, which is expressed in quad-dotted decimal representation like an address. For example, 255.255.255.0 is the network mask for the 192.168.1.0/24 prefix. Traffic between subnetworks is exchanged or routed with special gateways called routers which constitute the logical or physical boundaries between the subnets.
The benefits of subnetting vary with each deployment scenario. In the address allocation architecture of the Internet using Classless Inter-Domain Routing (CIDR) and in large organizations, it is necessary to allocate address space efficiently. It may also enhance routing efficiency, or have advantages in network management when subnetworks are administratively controlled by different entities in a larger organization. Subnets may be arranged logically in a hierarchical architecture, partitioning an organization's network address space into a tree-like routing structure.
Network addressing and routing
Computers participating in a network such as the Internet each have at least one logical address. Usually this address is unique to each device and can either be configured dynamically from a network server, statically by an administrator, or automatically by stateless address autoconfiguration.
An address fulfills the functions of identifying the host and locating it on the network. The most common network addressing architecture is Internet Protocol version 4 (IPv4), but its successor, IPv6, is in early deployment stages. An IPv4 address consists of 32 bits, for human readability written in a form consisting of four decimal octets separated by dots, called dot-decimal notation. An IPv6 address consists of 128 bits written in a hexadecimal notation and grouping 16 bits separated by colons.
This logical addressing structure permits the selective routing of IP packets across multiple networks via special gateway computers, called routers, to a destination host if the network prefixes of origination and destination hosts differ, or sent directly to a target host on the local network if they are the same. Routers constitute logical or physical borders between the subnets, and manage traffic between them. Each subnet is served by a designated default router, but may consist internally of multiple physical Ethernet segments interconnected by network switches or network bridges.
The modern standard form of specification of the network prefix is CIDR notation, used for both IPv4 and IPv6. It counts the number of bits in the prefix and appends that number to the address after a slash (/) character separator:
- 192.168.0.0, netmask 255.255.255.0 is written as 192.168.0.0/24
- In IPv6, 2001:db8::/32 designates the address 2001:db8:: and its network prefix consisting of the most significant 32 bits.
This notation was introduced with Classless Inter-Domain Routing (CIDR) in RFC 4632. In IPv6 this is the only acceptable form to denote network or routing prefixes.
In classful networking in IPv4, prior to the introduction of CIDR, the network prefix could be directly obtained from the IP address, based on its highest order bit sequence. This determined the class (A, B, C) of the address and therefore the network mask. Since the introduction of CIDR, however, assignment of an IP address to a network interface requires two parameters, the address and its network mask.
In IPv4, on-link determination for an IP address is given simply by the address and netmask configuration, as the address cannot be disassociated from the on-link prefix.[2] For IPv6, however, on-link determination is different in detail and requires the Neighbor Discovery Protocol (NDP).[3]