Categories

Solar cell

A solar cell made from a monocrystalline silicon wafer
A monocrystalline solar cell

A solar cell (also called photovoltaic cell or photoelectric cell) is a solid state electrical device that converts the energy of light directly into electricity by the photovoltaic effect.

Assemblies of cells used to make solar modules which are used to capture energy from sunlight, are known as solar panels. The energy generated from these solar modules, referred to as solar power, is an example of solar energy.

Photovoltaics is the field of technology and research related to the practical application of photovoltaic cells in producing electricity from light, though it is often used specifically to refer to the generation of electricity from sunlight.

Cells are described as photovoltaic cells when the light source is not necessarily sunlight. These are used for detecting light or other electromagnetic radiation near the visible range, for example infrared detectors, or measurement of light intensity.

Contents

[hide]

History of solar cells

The term "photovoltaic" comes from the Greek φῶς (phōs) meaning "light", and "voltaic", from the name of the Italian physicist Volta, after whom a unit of electro-motive force, the volt, is named. The term "photo-voltaic" has been in use in English since 1849.[1]

The photovoltaic effect was first recognized in 1839 by French physicist A. E. Becquerel. However, it was not until 1883 that the first photovoltaic cell was built, by Charles Fritts, who coated the semiconductor selenium with an extremely thin layer of gold to form the junctions. The device was only around 1% efficient. In 1888 Russian physicist Aleksandr Stoletov built the first photoelectric cell (based on the outer photoelectric effect discovered by Heinrich Hertz earlier in 1887). Albert Einstein explained the photoelectric effect in 1905 for which he received the Nobel prize in Physics in 1921.[2] Russell Ohl patented the modern junction semiconductor solar cell in 1946,[3] which was discovered while working on the series of advances that would lead to the transistor.

Bell produces the first practical cell

The modern photovoltaic cell was developed in 1954 at Bell Laboratories.[4] The highly efficient solar cell was first developed by Daryl Chapin, Calvin Souther Fuller and Gerald Pearson in 1954 using a diffused silicon p-n junction.[5] At first, cells were developed for toys and other minor uses, as the cost of the electricity they produced was very high; in relative terms, a cell that produced 1 watt of electrical power in bright sunlight cost about $250, comparing to $2 to $3 for a coal plant.

Solar cells were rescued from obscurity by the suggestion to add them to the Vanguard I satellite. In the original plans, the satellite would be powered only by battery, and last a short time while this ran down. By adding cells to the outside of the fuselage, the mission time could be extended with no major changes to the spacecraft or its power systems. There was some skepticism at first, but in practice the cells proved to be a huge success, and solar cells were quickly designed into many new satellites, notably Bell's own Telstar.

Improvements were slow over the next two decades, and the only widespread use was in space applications where their power-to-weight ratio was higher than any competing technology. However, this success was also the reason for slow progress; space users were willing to pay anything for the best possible cells, there was no reason to invest in lower-cost solutions if this would reduce efficiency. Instead, the price of cells was determined largely by the semiconductor industry; their move to integrated circuits in the 1960s led to the availability of larger boules at lower relative prices. As their price fell, the price of the resulting cells did as well. However these effects were limited, and by 1971 cell costs were estimated to be $100 per watt.[6]

Berman's price reductions

In the late 1960s, Elliot Berman was investigating a new method for producing the silicon feedstock in a ribbon process. However, he found little interest in the project and was unable to gain the funding needed to develop it. In a chance encounter, he was later introduced to a team at Exxon who were looking for projects 30 years in the future. The group had concluded that electrical power would be much more expensive by 2000, and felt that this increase in price would make new alternative energy sources more attractive, and solar was the most interesting among these. In 1969, Berman joined the Linden, New Jersey Exxon lab, Solar Power Corporation (SPC).[7]

His first major effort was to canvas the potential market to see what possible uses for a new product were, and they quickly found that if the dollars per watt was reduced from then-current $100/watt to about $20/watt there was significant demand. Knowing that his ribbon concept would take years to develop, the team started looking for ways to hit the $20 price point using existing materials.[7]

The first improvement was the realization that the existing cells were based on standard semiconductor manufacturing process, even though that was not ideal. This started with the boule, cutting it into disks called wafers, polishing the wafers, and then, for cell use, coating them with an anti-reflective layer. Berman noted that the rough-sawn wafers already had a perfectly suitable anti-reflective front surface, and by printing the electrodes directly on this surface, two major steps in the cell processing were eliminated. The team also explored ways to improve the mounting of the cells into arrays, eliminating the expensive materials and hand wiring used in space applications. Their solution was to use a printed circuit board on the back, acrylic plastic on the front, and silicone based glue between the two, potting the cells. But the largest improvement in price point was Berman's realization that existing silicon was effectively "too good" for solar cell use; the minor imperfections that would ruin a boule (or individual wafer) for electronics would have little effect in the solar application.[8] Solar cells could be made using cast-off material from the electronics market.

Putting all of these changes into practice, the company started buying up "reject" silicon from existing manufacturers at very low cost. By using the largest wafers available, thereby reducing the amount of wiring for a given panel area, and packaging them into panels using their new methods, by 1973 SPC was producing panels at $10 per watt and selling them at $20 per watt, a fivefold decrease in prices in two years.

Navigation market

SPC approached companies making navigational buoys as a natural market for their products, but found a curious situation. The primary company in the business was Automatic Power, a battery manufacturer. Realizing that solar cells might eat into their battery profits, Automatic purchased the rights to earlier solar cell designs and suppressed them.[citation needed] Seeing there was no interest at Automatic, SPC turned to Tideland Signal, another battery company formed by ex-Automatic managers. Tideland introduced a solar-powered buoy and was soon ruining Automatic's business.

The timing could not be better; the rapid increase in the number of offshore oil platforms and loading facilities produced an enormous market among the oil companies. As Tideland's fortunes improved, Automatic started looking for their own supply of solar panels. They found Bill Yerks of Solar Power International (SPI) in California, who was looking for a market. SPI was soon bought out by one of its largest customers, the ARCO oil giant, forming ARCO Solar. ARCO Solar's factory in Camarillo, California was the first dedicated to building solar panels, and has been in continual operation from its purchase by ARCO in 1977 to this day.

This market, combined with the 1973 oil crisis, led to a curious situation. Oil companies were now cash-flush due to their huge profits during the crisis, but were also acutely aware that their future success would depend on some other form of power. Over the next few years, major oil companies started a number of solar firms, and were for decades the largest producers of solar panels. Exxon, ARCO, Shell, Amoco (later purchased by BP) and Mobil all had major solar divisions during the 1970s and 80s. Technology companies also had some investment, including General Electric, Motorola, IBM, Tyco and RCA.[9]

Further improvements

In the time since Berman's work, improvements have brought production costs down under $1 a watt, with wholesale costs on the order of $2. "Balance of system" costs are now more than the panels themselves, with large commercial arrays falling to $3.40 a watt,[10] fully commissioned, in 2010.

As the semiconductor industry moved to ever-larger boules, older equipment became available at fire-sale prices. Cells have grown in size as older equipment became available on the surplus market; ARCO Solar's original panels used cells with 2 to 4 inch diameter. Panels in the 1990s and early 2000s generally used 5 inch wafers, and since 2008 almost all new panels use 6 inch cells. Another major change was the move to polycrystalline silicon. This material has less efficiency, but is less expensive to produce in bulk. The widespread introduction of flat screen televisions in the late 1990s and early 2000s led to the wide availability of large sheets of high-quality glass, used on the front of the panels.

Other technologies have tried to enter the market. First Solar was briefly the largest panel manufacturer in 2009, in terms of yearly power produced, using a thin-film cell sandwiched between two layers of glass. Since then Silicon panels reasserted their dominant position both in terms of lower prices and the rapid rise of Chinese manufacturing resulted in the top producers being Chinese.

Applications

Polycrystalline photovoltaic cells laminated to backing material in a module
Polycrystalline photovoltaic cells

Solar cells are often electrically connected and encapsulated as a module. Photovoltaic modules often have a sheet of glass on the front (sun up) side, allowing light to pass while protecting the semiconductor wafers from abrasion and impact due to wind-driven debris, rain, hail, etc. Solar cells are also usually connected in series in modules, creating an additive voltage. Connecting cells in parallel will yield a higher current. Modules are then interconnected, in series or parallel, or both, to create an array with the desired peak DC voltage and current.

To make practical use of the solar-generated energy, the electricity is most often fed into the electricity grid using inverters (grid-connected photovoltaic systems); in stand-alone systems, batteries are used to store the energy that is not needed immediately. Solar panels can be used to power or recharge portable devices.

Theory

The solar cell works in three steps:

  1. Photons in sunlight hit the solar panel and are absorbed by semiconducting materials, such as silicon.
  2. Electrons (negatively charged) are knocked loose from their atoms, allowing them to flow through the material to produce electricity. Due to the special composition of solar cells, the electrons are only allowed to move in a single direction.
  3. An array of solar cells converts solar energy into a usable amount of direct current (DC) electricity.

Efficiency

The efficiency of a solar cell may be broken down into reflectance efficiency, thermodynamic efficiency, charge carrier separation efficiency and conductive efficiency. The overall efficiency is the product of each of these individual efficiencies.

Due to the difficulty in measuring these parameters directly, other parameters are measured instead: thermodynamic efficiency, quantum efficiency, integrated quantum efficiency, VOC ratio, and fill factor. Reflectance losses are a portion of the quantum efficiency under "external quantum efficiency". Recombination losses make up a portion of the quantum efficiency, VOC ratio, and fill factor. Resistive losses are predominantly categorized under fill factor, but also make up minor portions of the quantum efficiency, VOC ratio.

The fill factor is defined as the ratio of the actual maximum obtainable power, to the product of the open circuit voltage and short circuit current. This is a key parameter in evaluating the performance of solar cells. Typical commercial solar cells have a fill factor > 0.70. Grade B cells have a fill factor usually between 0.4 to 0.7. The fill factor is, besides efficiency, one of the most significant parameters for the energy yield of a photovoltaic cell. [11] Cells with a high fill factor have a low equivalent series resistance and a high equivalent shunt resistance, so less of the current produced by light is dissipated in internal loses.

Crystalline silicon devices are now approaching the theoretical limiting efficiency of 29%.

Cost

The cost of a solar cell is given per unit of peak electrical power. Manufacturing costs necessarily include the cost of energy required for manufacture. Solar-specific feed in tariffs vary worldwide, and even state by state within various countries.[12] Such feed-in tariffs can be highly effective in encouraging the development of solar power projects.

High-efficiency solar cells are of interest to decrease the cost of solar energy. Many of the costs of a solar power plant are proportional to the area of the plant; a higher efficiency cell may reduce area and plant cost, even if the cells themselves are more costly. Efficiencies of bare cells, to be useful in evaluating solar power plant economics, must be evaluated under realistic conditions. The basic parameters that need to be evaluated are the short circuit current, open circuit voltage.[13]

The chart below illustrates the best laboratory efficiencies obtained for various materials and technologies, generally this is done on very small, i.e. one square cm, cells. Commercial efficiencies are significantly lower.

Reported timeline of solar cell energy conversion efficiencies (from National Renewable Energy Laboratory (USA)

Grid parity, the point at which photovoltaic electricity is equal to or cheaper than grid power, can be reached using low cost solar cells. It is achieved first in areas with abundant sun and high costs for electricity such as in California and Japan.[14] Grid parity has been reached in Hawaii and other islands that otherwise use diesel fuel to produce electricity. George W. Bush had set 2015 as the date for grid parity in the USA.[15][16] Speaking at a conference in 2007, General Electric's Chief Engineer predicted grid parity without subsidies in sunny parts of the United States by around 2015.[17]

The price of solar panels fell steadily for 40 years, until 2004 when high subsidies in Germany drastically increased demand there and greatly increased the price of purified silicon (which is used in computer chips as well as solar panels). The great recession of 2008, and the onset of Chinese manufacturing, caused prices to resume their decline with vehemence. In the four years after January 2008 spot prices for solar modules in the German market prices dropped from €3 to €1 per Watt peak. During that same times production capacity surged with an annual growth of more than 50% and the Mainland Chinese went from single digit to over 50% market share.[18]

Materials

The Shockley-Queisser limit for the theoretical maximum efficiency of a solar cell. Semiconductors with bandgap between 1 and 1.5eV have the greatest potential to form an efficient cell. (The efficiency "limit" shown here can be exceeded by multijunction solar cells.)

Different materials display different efficiencies and have different costs. Materials for efficient solar cells must have characteristics matched to the spectrum of available light. Some cells are designed to efficiently convert wavelengths of solar light that reach the Earth surface. However, some solar cells are optimized for light absorption beyond Earth's atmosphere as well. Light absorbing materials can often be used in multiple physical configurations to take advantage of different light absorption and charge separation mechanisms.

Materials presently used for photovoltaic solar cells include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper indium selenide/sulfide.[19]

Many currently available solar cells are made from bulk materials that are cut into wafers between 180 to 240 micrometers thick that are then processed like other semiconductors.

Other materials are made as thin-films layers, organic dyes, and organic polymers that are deposited on supporting substrates. A third group are made from nanocrystals and used as quantum dots (electron-confined nanoparticles). Silicon remains the only material that is well-researched in both bulk and thin-film forms.

Crystalline silicon

Basic structure of a silicon based solar cell and its working mechanism.

By far, the most prevalent bulk material for solar cells is crystalline silicon (abbreviated as a group as c-Si), also known as "solar grade silicon". Bulk silicon is separated into multiple categories according to crystallinity and crystal size in the resulting ingot, ribbon, or wafer.

  1. monocrystalline silicon (c-Si): often made using the Czochralski process. Single-crystal wafer cells tend to be expensive, and because they are cut from cylindrical ingots, do not completely cover a square solar cell module without a substantial waste of refined silicon. Hence most c-Si panels have uncovered gaps at the four corners of the cells.
  2. Poly- or multicrystalline silicon (poly-Si or mc-Si): made from cast square ingots — large blocks of molten silicon carefully cooled and solidified. Poly-Si cells are less expensive to produce than single crystal silicon cells, but are less efficient. US DOE data shows that there were a higher number of multicrystalline sales than monocrystalline silicon sales.
  3. Ribbon silicon[20] is a type of multicrystalline silicon: it is formed by drawing flat thin films from molten silicon and results in a multicrystalline structure. These cells have lower efficiencies than poly-Si, but save on production costs due to a great reduction in silicon waste, as this approach does not require sawing from ingots.

Analysts have predicted that prices of polycrystalline silicon will drop as companies build additional polysilicon capacity quicker than the industry’s projected demand. On the other hand, the cost of producing upgraded metallurgical-grade silicon, also known as UMG Si, can potentially be one-sixth that of making polysilicon.[21]

Manufacturers of wafer-based cells have responded to high silicon prices in 2004-2008 prices with rapid reductions in silicon consumption. According to Jef Poortmans, director of IMEC's organic and solar department, current cells use between eight and nine grams of silicon per watt of power generation, with wafer thicknesses in the neighborhood of 0.200 mm. At 2008 spring's IEEE Photovoltaic Specialists' Conference (PVS'08), John Wohlgemuth, staff scientist at BP Solar, reported that his company has qualified modules based on 0.180 mm thick wafers and is testing processes for 0.16 mm wafers cut with 0.1 mm wire. IMEC's roadmap, presented at the organization's recent annual research review meeting, envisions use of 0.08 mm wafers by 2015.[22]

Thin films

Marketshare of the different PV technologies In 2010 the marketshare of thin film declined by 30% as thin film technology was displaced by more efficient crystalline silicon solar panels (the light and dark blue bars).

Thin-film technologies reduce the amount of material required in creating the active material of solar cell. Most thin film solar cells are sandwiched between two panes of glass to make a module. Since silicon solar panels only use one pane of glass, thin film panels are approximately twice as heavy as crystalline silicon panels. The majority of film panels have significantly lower conversion efficiencies, lagging silicon by two to three percentage points.[23] Thin-film solar technologies have enjoyed large investment due to the success of First Solar and the, largely unfulfilled, promise of lower cost and flexibility compared to wafer silicon cells, but they have not become mainstream solar products due to their lower efficiency and corresponding larger area consumption per watt production. Cadmium telluride (CdTe), copper indium gallium selenide (CIGS) and amorphous silicon (A-Si) are three thin-film techologies often used as outdoor photovoltaic solar power production. CdTe technology is most cost competitive among them.[24] CdTe technology costs about 30% less than CIGS technology and 40% less than A-Si technology in 2011.

Cadmium telluride solar cell

A cadmium telluride solar cell uses a cadmium telluride (CdTe) thin film, a semiconductor layer to absorb and convert sunlight into electricity. Solarbuzz[25] has reported that the lowest quoted thin-film module price stands at US$1.76 per watt-peak, with the lowest crystalline silicon (c-Si) module at $2.48 per watt-peak.

The cadmium present in the cells would be toxic if released. However, release is impossible during normal operation of the cells and is unlikely during fires in residential roofs.[26] A square meter of CdTe contains approximately the same amount of Cd as a single C cell Nickel-cadmium battery, in a more stable and less soluble form.[26]

Copper indium galium selenide

Copper indium gallium selenide (CIGS) is a direct-bandgap material. It has the highest efficiency (~20%) among thin film materials (see CIGS solar cell). Traditional methods of fabrication involve vacuum processes including co-evaporation and sputtering. Recent developments at IBM and Nanosolar attempt to lower the cost by using non-vacuum solution processes.

Gallium arsenide multijunction

High-efficiency multijunction cells were originally developed for special applications such as satellites and space exploration, but at present, their use in terrestrial concentrators might be the lowest cost alternative in terms of $/kWh and $/W.[27] These multijunction cells consist of multiple thin films produced using metalorganic vapour phase epitaxy. A triple-junction cell, for example, may consist of the semiconductors: GaAs, Ge, and GaInP2.[28] Each type of semiconductor will have a characteristic band gap energy which, loosely speaking, causes it to absorb light most efficiently at a certain color, or more precisely, to absorb electromagnetic radiation over a portion of the spectrum. The semiconductors are carefully chosen to absorb nearly all of the solar spectrum, thus generating electricity from as much of the solar energy as possible.

GaAs based multijunction devices are the most efficient solar cells to date. In October 2010, triple junction metamorphic cell reached a record high of 42.3%.[29]

This technology is currently being utilized in the Mars Exploration Rover missions which have run far past their 90 day design life.

Tandem solar cells based on monolithic, series connected, gallium indium phosphide (GaInP), gallium arsenide GaAs, and germanium Ge pn junctions, are seeing demand rapidly rise. Between December 2006 and December 2007, the cost of 4N gallium metal rose from about $350 per kg to $680 per kg. Additionally, germanium metal prices have risen substantially to $1000–$1200 per kg this year. Those materials include gallium (4N, 6N and 7N Ga), arsenic (4N, 6N and 7N) and germanium, pyrolitic boron nitride (pBN) crucibles for growing crystals, and boron oxide, these products are critical to the entire substrate manufacturing industry.

Triple-junction GaAs solar cells were also being used as the power source of the Dutch four-time World Solar Challenge winners Nuna in 2003, 2005 and 2007, and also by the Dutch solar cars Solutra (2005), Twente One (2007) and 21Revolution (2009).

The Dutch Radboud University Nijmegen set the record for thin film solar cell efficiency using a single junction GaAs to 25.8% in August 2008 using only 4 µm thick GaAs layer which can be transferred from a wafer base to glass or plastic film.[30]

Light-absorbing dyes (DSSC)

Dye-sensitized solar cells (DSSCs) are made of low-cost materials and do not need elaborate equipment to manufacture, so they can be made in a DIY fashion, possibly allowing players to produce more of this type of solar cell than others. In bulk it should be significantly less expensive than older solid-state cell designs. DSSC's can be engineered into flexible sheets, and although its conversion efficiency is less than the best thin film cells, its price/performance ratio should be high enough to allow them to compete with fossil fuel electrical generation. The DSSC has been developed by Prof. Michael Grätzel in 1991 at the Swiss Federal Institute of Technology (EPFL) in Lausanne (CH).

Typically a ruthenium metalorganic dye (Ru-centered) is used as a monolayer of light-absorbing material. The dye-sensitized solar cell depends on a mesoporous layer of nanoparticulate titanium dioxide to greatly amplify the surface area (200–300 m2/g TiO2, as compared to approximately 10 m2/g of flat single crystal). The photogenerated electrons from the light absorbing dye are passed on to the n-type TiO2, and the holes are absorbed by an electrolyte on the other side of the dye. The circuit is completed by a redox couple in the electrolyte, which can be liquid or solid. This type of cell allows a more flexible use of materials, and is typically manufactured by screen printing and/or use of Ultrasonic Nozzles, with the potential for lower processing costs than those used for bulk solar cells. However, the dyes in these cells also suffer from degradation under heat and UV light, and the cell casing is difficult to seal due to the solvents used in assembly. In spite of the above, this is a popular emerging technology with some commercial impact forecast within this decade. The first commercial shipment of DSSC solar modules occurred in July 2009 from G24i Innovations.[31]

Organic/polymer solar cells

Organic solar cells are a relatively novel technology, yet hold the promise of a substantial price reduction (over thin-film silicon) and a faster return on investment. These cells can be processed from solution, hence the possibility of a simple roll-to-roll printing process, leading to inexpensive, large scale production.

Organic solar cells and polymer solar cells are built from thin films (typically 100 nm) of organic semiconductors including polymers, such as polyphenylene vinylene and small-molecule compounds like copper phthalocyanine (a blue or green organic pigment) and carbon fullerenes and fullerene derivatives such as PCBM. Energy conversion efficiencies achieved to date using conductive polymers are low compared to inorganic materials. However, it has improved quickly in the last few years and the highest NREL (National Renewable Energy Laboratory) certified efficiency has reached 8.3% for the Konarka Power Plastic.[32] In addition, these cells could be beneficial for some applications where mechanical flexibility and disposability are important.

These devices differ from inorganic semiconductor solar cells in that they do not rely on the large built-in electric field of a PN junction to separate the electrons and holes created when photons are absorbed. The active region of an organic device consists of two materials, one which acts as an electron donor and the other as an acceptor. When a photon is converted into an electron hole pair, typically in the donor material, the charges tend to remain bound in the form of an exciton, and are separated when the exciton diffuses to the donor-acceptor interface. The short exciton diffusion lengths of most polymer systems tend to limit the efficiency of such devices. Nanostructured interfaces, sometimes in the form of bulk heterojunctions, can improve performance.[33]

Silicon thin films

Silicon thin-film cells are mainly deposited by chemical vapor deposition (typically plasma-enhanced, PE-CVD) from silane gas and hydrogen gas. Depending on the deposition parameters, this can yield:[34]

  1. Amorphous silicon (a-Si or a-Si:H)
  2. Protocrystalline silicon or
  3. Nanocrystalline silicon (nc-Si or nc-Si:H), also called microcrystalline silicon.

It has been found that protocrystalline silicon with a low volume fraction of nanocrystalline silicon is optimal for high open circuit voltage.[35] These types of silicon present dangling and twisted bonds, which results in deep defects (energy levels in the bandgap) as well as deformation of the valence and conduction bands (band tails). The solar cells made from these materials tend to have lower energy conversion efficiency than bulk silicon, but are also less expensive to produce. The quantum efficiency of thin film solar cells is also lower due to reduced number of collected charge carriers per incident photon.

An amorphous silicon (a-Si) solar cell is made of amorphous or microcrystalline silicon and its basic electronic structure is the p-i-n junction. a-Si is attractive as a solar cell material because it is abundant and non-toxic (unlike its CdTe counterpart) and requires a low processing temperature, enabling production of devices to occur on flexible and low-cost substrates. As the amorphous structure has a higher absorption rate of light than crystalline cells, the complete light spectrum can be absorbed with a very thin layer of photo-electrically active material. A film only 1 micron thick can absorb 90% of the usable solar energy.[36] This reduced material requirement along with current technologies being capable of large-area deposition of a-Si, the scalability of this type of cell is high. However, because it is amorphous, it has high inherent disorder and dangling bonds, making it a bad conductor for charge carriers. These dangling bonds act as recombination centers that severely reduce the carrier lifetime and pin the Fermi energy level so that doping the material to n- or p- type is not possible. Amorphous Silicon also suffers from the Staebler-Wronski effect, which results in the efficiency of devices utilizing amorphous silicon dropping as the cell is exposed to light. The production of a-Si thin film solar cells uses glass as a substrate and deposits a very thin layer of silicon by plasma-enhanced chemical vapor deposition (PECVD). A-Si manufacturers are working towards lower costs per watt and higher conversion efficiency with continuous research and development on Multijunction solar cells for solar panels. Anwell Technologies Limited recently announced its target for multi-substrate-multi-chamber PECVD, to lower the cost to USD0.5 per watt.[37]

Amorphous silicon has a higher bandgap (1.7 eV) than crystalline silicon (c-Si) (1.1 eV), which means it absorbs the visible part of the solar spectrum more strongly than the infrared portion of the spectrum. As nc-Si has about the same bandgap as c-Si, the nc-Si and a-Si can advantageously be combined in thin layers, creating a layered cell called a tandem cell. The top cell in a-Si absorbs the visible light and leaves the infrared part of the spectrum for the bottom cell in nc-Si.

Recently, solutions to overcome the limitations of thin-film crystalline silicon have been developed. Light trapping schemes where the weakly absorbed long wavelength light is obliquely coupled into the silicon and traverses the film several times can significantly enhance the absorption of sunlight in the thin silicon films.[38] Minimizing the top contact coverage of the cell surface is another method for reducing optical losses; this approach simply aims at reducing the area that is covered over the cell to allow for maximum light input into the cell. Anti-reflective coatings can also be applied to create destructive interference within the cell. This can by done by modulating the Refractive index of the surface coating; if destructive interference is achieved, there will be no reflective wave and thus all light will be transmitted into the semiconductor cell. Surface texturing is another option, but may be less viable because it also increases the manufacturing price. By applying a texture to the surface of the solar cell, the reflected light can be refracted into striking the surface again, thus reducing the overall light reflected out. Light trapping as another method allows for a decrease in overall thickness of the device; the path length that the light will travel is several times the actual device thickness. This can be achieved by adding a textured backreflector to the device as well as texturing the surface. If both front and rear surfaces of the device meet this criteria, the light will be 'trapped' by not having an immediate pathway out of the device due to internal reflections. Thermal processing techniques can significantly enhance the crystal quality of the silicon and thereby lead to higher efficiencies of the final solar cells.[39] Further advancement into geometric considerations of building devices can exploit the dimensionality of nanomaterials. Creating large, parallel nanowire arrays enables long absoprtion lengths along the length of the wire while still maintaining short minority carrier diffusion lengths along the radial direction. Adding nanoparticles between the nanowires will allow for conduction through the device. Because of the natural geometry of these arrays, a textured surface will naturally form which allows for even more light to be trapped. A further advantage of this geometry is that these types of devices require about 100 times less material than conventional wafer-based devices.

Manufacture

Early calculator solar battery

Because solar cells are semiconductor devices, they share some of the same processing and manufacturing techniques as other semiconductor devices such as computer and memory chips. However, the stringent requirements for cleanliness and quality control of semiconductor fabrication are more relaxed for solar cells. Most large-scale commercial solar cell factories today make screen printed poly-crystalline or single crystalline silicon solar cells.

Poly-crystalline silicon wafers are made by wire-sawing block-cast silicon ingots into very thin (180 to 350 micrometer) slices or wafers. The wafers are usually lightly p-type doped. To make a solar cell from the wafer, a surface diffusion of n-type dopants is performed on the front side of the wafer. This forms a p-n junction a few hundred nanometers below the surface.

Antireflection coatings, to increase the amount of light coupled into the solar cell, are typically next applied. Silicon nitride has gradually replaced titanium dioxide as the antireflection coating because of its excellent surface passivation qualities. It prevents carrier recombination at the surface of the solar cell. It is typically applied in a layer several hundred nanometers thick using plasma-enhanced chemical vapor deposition (PECVD). Some solar cells have textured front surfaces that, like antireflection coatings, serve to increase the amount of light coupled into the cell. Such surfaces can usually only be formed on single-crystal silicon, though in recent years methods of forming them on multicrystalline silicon have been developed.

The wafer then has a full area metal contact made on the back surface, and a grid-like metal contact made up of fine "fingers" and larger "busbars" are screen-printed onto the front surface using a silver paste. The rear contact is also formed by screen-printing a metal paste, typically aluminium. Usually this contact covers the entire rear side of the cell, though in some cell designs it is printed in a grid pattern. The paste is then fired at several hundred degrees celsius to form metal electrodes in ohmic contact with the silicon. Some companies use an additional electro-plating step to increase the cell efficiency. After the metal contacts are made, the solar cells are interconnected in series (and/or parallel) by flat wires or metal ribbons, and assembled into modules or "solar panels". Solar panels have a sheet of tempered glass on the front, and a polymer encapsulation on the back.

Lifespan

Most commercially available solar panels are capable of producing electricity for at least twenty years. The typical warranty given by panel manufacturers is over 90% of rated output for the first 10 years, and over 80% for the second 10 years. Panels are expected to function for a period of 30 – 35 years.[40]

Research topics

There are currently many research groups active in the field of photovoltaics in universities and research institutions around the world. This research can be divided into three areas: making current technology solar cells cheaper and/or more efficient to effectively compete with other energy sources; developing new technologies based on new solar cell architectural designs; and developing new materials to serve as light absorbers and charge carriers.

Manufacturers and certification

National Renewable Energy Laboratory tests and validates solar technologies. There are three reliable certifications of solar equipment: UL and IEEE (both U.S. standards) and IEC.

Solar cells are manufactured primarily in Japan, Germany, Mainland China, Taiwan and the United States,[41] though numerous other nations have or are acquiring significant solar cell production capacity. While technologies are constantly evolving toward higher efficiencies, the most effective cells for low cost electrical production are not necessarily those with the highest efficiency, but those with a balance between low-cost production and efficiency high enough to minimize area-related balance of systems cost. Those companies with large scale manufacturing technology for coating inexpensive substrates may, in fact, ultimately be the lowest cost net electricity producers, even with cell efficiencies that are lower than those of single-crystal technologies.

China

Backed by Chinese government's unprecedented plan to offer subsidies for utility-scale solar power projects that is likely to spark a new round of investment from Chinese solar panel makers. Chinese companies have already played a more important role in solar panels manufacturing in recent years. China produced solar cells/modules with an output of 13 GW in 2010 which represents about half of the global production and makes China the largest producer in the world.[42] Some Chinese companies such as Suntech Power, Yingli, LDK Solar Co, JA Solar and ReneSola have already announced projects in cooperation with regional governments with hundreds of megawatts each after the ‘Golden Sun’ incentive program was announced by the government.[43] The rapid expansion of silicon and wafer production by GCL, China's largest private power producer, will further fuel China's growth as the world's solar manufacturer.

United States

New manufacturing facilities for solar cells and modules in Massachusetts, Michigan, New York, Ohio, Oregon, and Texas promise to add enough capacity to produce thousands of megawatts of solar devices per year within the next few years from 2008.[44]

In late September 2008, Sanyo Electric Company, Ltd. announced its decision to build a manufacturing plant for solar ingots and wafers in Salem, Oregon. The plant began operating in October 2009 and reached its full production capacity of 70 megawatts (MW) of solar wafers per year in April 2010.

In early October 2008, First Solar, Inc. broke ground on an expansion of its Perrysburg, Ohio, facility that will add enough capacity to produce another 57 MW per year of solar modules at the facility, bringing its total capacity to roughly 192 MW per year. The company expects to complete construction early next year and reach full production by mid-2010.

In mid-October 2008, SolarWorld AG opened a manufacturing plant in Hillsboro, Oregon, that is currently producing 500 MW of solar cells per year in 2011.

Solyndra has a manufacturing facility for its unique tubular CIGS technology in California. Solyndra closed its factory on August 31st, 2011 and announced it would file for bankruptcy. [45]

In March 2010, SpectraWatt, Inc. began production at its manufacturing plant in Hopewell Junction, NY, which was expected to produce 120 MW of solar cells per year when it reached full production in 2011. However, the closure of this plant was announced in late 2010 due to deteriorating market conditions coupled with demand drops from Europe.[46] SpectraWatt filed for bankruptcy on August 24, 2011. [47]

See also

 
 
 

References

  1. ^ Alfred Smee (1849). Elements of electro-biology,: or the voltaic mechanism of man; of electro-pathology, especially of the nervous system; and of electro-therapeutics. London: Longman, Brown, Green, and Longmans. p. 15.
  2. ^ "The Nobel Prize in Physics 1921: Albert Einstein", Nobel Price official page
  3. ^ "Light sensitive device" U.S. Patent 2,402,662 Issue date: June 1946
  4. ^ K. A. Tsokos, "Physics for the IB Diploma", Fifth edition, Cambridge University Press, Cambridge, 2008, ISBN 0521708206
  5. ^ Perlin, John (2004). "The Silicon Solar Cell Turns 50". National Renewable Energy Laboratory. Retrieved 5 October 2010.
  6. ^ John Perlin, "From Space to Earth: The Story of Solar Electricity", Harvard University Press, 2002, pg. 50
  7. ^ a b John Perlin, "From Space to Earth: The Story of Solar Electricity", Harvard University Press, 2002, pg. 53
  8. ^ John Perlin, "From Space to Earth: The Story of Solar Electricity", Harvard University Press, 2002, pg. 54
  9. ^ The multinational connections-who does what where", New Scientist, 18 October 1979, pg. 177
  10. ^ $1/W Photovoltaic Systems DOE whitepaper August 2010
  11. ^ "T.Bazouni: What is the Fill Factor of a Solar Panel". Retrieved 2009-02-17.
  12. ^ Solar Feed in Tariffs. Solarfeedintariff.net. Retrieved on 2011-01-19.
  13. ^ N. Gupta, G. F. Alapatt, R. Podila, R. Singh, K.F. Poole, (2009). "Prospects of Nanostructure-Based Solar Cells for Manufacturing Future Generations of Photovoltaic Modules". International Journal of Photoenergy 2009: 1. doi:10.1155/2009/154059.
  14. ^ BP Global – Reports and publications – Going for grid parity. Bp.com. Retrieved on 2011-01-19.
  15. ^ BP Global – Reports and publications – Gaining on the grid. Bp.com. Retrieved on 2011-01-19.
  16. ^ The Path to Grid Parity (Graphic)
  17. ^ Wynn, Gerard (2007-10-19). "Solar power edges towards boom time". Reuters. Retrieved 2009-07-29.
  18. ^ Monthly statistics in Photon International
  19. ^ Mark Z. Jacobson (2009). Review of Solutions to Global Warming, Air Pollution, and Energy Security p. 4.
  20. ^ "String ribbon silicon solar cells with 17.8% efficiency".
  21. ^ Charting a Path to Low-Cost Solar. Greentech Media (2008-07-16). Retrieved on 2011-01-19.
  22. ^ Katherine Derbyshire (January 9, 2009). "Wafer-based Solar Cells Aren't Done Yet".
  23. ^ Datasheets of the market leaders: First Solar for thin film, Suntech and SunPower for crystalline silicon
  24. ^ "Thin-Film Cost Reports". pvinsights.com. 2011 [last update]. Retrieved June 19, 2011.
  25. ^ Solar Energy Industry Research and Consultancy. Solarbuzz. Retrieved on 2011-01-19.
  26. ^ a b Fthenakis, Vasilis M. (August 2004). "Life cycle impact analysis of cadmium in CdTe PV production" (PDF). Renewable and Sustainable Energy Reviews 8 (4): 303–334. doi:10.1016/j.rser.2003.12.001.
  27. ^ Swanson, R. M. (2000). "The Promise of Concentrators". Progress in Photovoltaics: Res. Appl. 8 (1): 93–111. doi:10.1002/(SICI)1099-159X(200001/02)8:1<93::AID-PIP303>3.0.CO;2-S.
  28. ^ Triple-Junction Terrestrial Concentrator Solar Cells
  29. ^ Spire pushes solar cell record to 42.3%. Optics.org. Retrieved on 2011-01-19.
  30. ^ [1][dead link]
  31. ^ G24i
  32. ^ Konarka Power Plastic reaches 8.3% efficiency. pv-tech.org. Retrieved on 2011-05-07.
  33. ^ Mayer, A et al. (2007). "Polymer-based solar cells". Materials Today 10 (11): 28. doi:10.1016/S1369-7021(07)70276-6.
  34. ^ Collins, R (2003). "Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry". Solar Energy Materials and Solar Cells 78 (1-4): 143. doi:10.1016/S0927-0248(02)00436-1.
  35. ^ J. M. Pearce, N. Podraza, R. W. Collins, M.M. Al-Jassim, K.M. Jones, J. Deng, and C. R. Wronski (2007). "Optimization of Open-Circuit Voltage in Amorphous Silicon Solar Cells with Mixed Phase (Amorphous + Nanocrystalline) p-Type Contacts of Low Nanocrystalline Content". Journal of Applied Physics 101: 114301. doi:10.1063/1.2714507.
  36. ^ Photovoltaics. Engineering.Com (2007-07-09). Retrieved on 2011-01-19.
  37. ^ "ANWELL produces its first solar panel". NextInsight. 2009-09-01.
  38. ^ Widenborg, Per I.; Aberle, Armin G. (2007). "Polycrystalline Silicon Thin-Film Solar Cells on AIT-Textured Glass Superstrates". Advances in OptoElectronics 2007: 1. doi:10.1155/2007/24584.
  39. ^ Terry, Mason L.; Straub, Axel; Inns, Daniel; Song, Dengyuan; Aberle, Armin G. (2005). "Large open-circuit voltage improvement by rapid thermal annealing of evaporated solid-phase-crystallized thin-film silicon solar cells on glass". Applied Physics Letters 86 (17): 172108. doi:10.1063/1.1921352.
  40. ^ "Photovoltaic Systems". toolbase.org. Retrieved November 11, 2010.
  41. ^ Eco-Economy Indicators – Solar Power | EPI. Earth-policy.org. Retrieved on 2011-01-19.
  42. ^ March 2011 issue of Photon International
  43. ^ "First Solar’s Gift to China: How to Build a Solar Farm". GreentechMedia. 2009-09-10.
  44. ^ EERE News: EERE Network News. Apps1.eere.energy.gov. Retrieved on 2011-01-19.
  45. ^ "Solar Firm Aided by Federal Loans Shuts Doors". The New York Times. Retrieved September 2, 2011.
  46. ^ Cheyney, Tom (2010). "Report: Intel spinoff SpectraWatt to lay off workers, shut down solar cell operations". PV-Tech. Retrieved February 15, 2011.
  47. ^ "Intel solar spinoff SpectraWatt files for bankruptcy". Retrieved September 2, 2011.
Author:Bling King
Published:Sep 26th 2011
Modified:Jan 10th 2012
Please Sign In to Add a Comment
or

 

 

Add Member

Add video

Add a Chat Room

Add Photos

Add Website Link

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Alcatraz

In Room: 0
The prison
 

 

 

 

California

In Room: 0
Welcome
 

CONCERT

In Room: 0
This is the video room for all online live concerts
 

Darrell on camera

In Room: 1
video messanger with Darrell here.
 

General Chat

In Room: 0
 

Gillian Howards

In Room: 0
A place to chat with me.
 

Grand Canyon

In Room: 0
Thee Grand Canyon
 

Ground Zero, New York City

Harvard University

In Room: 0
 

Jamie Perrins

In Room: 0
This is a place to talk with me.
 

Jessica Mott

In Room: 0
Talk to me here.
 
Categories

:
:
:

Image result for banner ad

Image result for banner ad                                        Image result for banner adImage result for banner ad                                 Image result for banner ad

Voting Poll
:
There is no such thing as time
Posted by Bling King

    

     Upon further ponderance I have come to the conclusion that time does not exist except in the law of physics. I have come to this conclusion through the observation of how things change and why they change at the pace in which they change. To me it seems that every change that takes place  in the universe is not dictated by time but rather physics. It is the law of physics that dictates the rate and speed at which all things change. For example if you have a car  that is traveling at 100 miles an hour the speed at  which the car travels is all dictated by physical changes and therfor controlled by the law of physics..Therfor it seems that for any change to take place all you need is physics and the law of physics that governs the physical changes. Time does not need be a factor and bears no relavance. As long as we have the law of physics everything will happen in accordance with those laws.

The composition of time
Posted by Bling King

   

    Time has 3 components. A front a middle and a rear. In the front time has what appears to be something of perspectual perspectualness that will move things forward at a set forth proponent. This part of time is easy to see and witness. However it is not easy to predict at which point time will make forward momentum happen. It would seem that this forward momentum is always in inactment but I would disagree with this. To me it seems more as if time interacts with things on its own accord leaving somethings unchanged for long standing periods of time. An example of this would be how time occasionally interacts with the speed of light. The speed of light remains constant but occasionally time will manifest itself into the equation and make modifications of the speed that light travels. For instance light will move forward forthwittingly at a billion miles a second but if it encounters any kind of resistance then time will inject itself and change the speed at which it was moving. Which leads me to the assumption that in order for time to inject itself into any equation a proponent has to take place that makes a physical change that would cause time to interject itself. If no physical change takes place than time has also not been a factor.

    The middle proponent of time is the area in which time is manipulating  the change that takes...Read More

👄What turns me on
Posted by Bling King

    I get turned on by some funny stuff. I'm not really into like full blown kinkiness or at least I wouldn't consider myself to be a kinky person but I do have a few fetishes. Some of them are a little out of the ordinary. For instance I have this one fetish about being tied up  and thrown in the ocean and then rescued by a mermaid. I think this fantasy comes from when I was a kid and I used to dream of mermaids and always wanted to meet one. Well one day its gonna happen. Now don't go telling me mermaids don't exist. You don't know cause they are in fact real and as soon as I meet one I will prove it to you. As far as some of my other turn ons  I guess what really gets me excited is people who  tell other people to shut the fuck up. I love when a woman just looks at a man and tells him to shut his mouth. To me thats a big turn on because the woman seems assertive like a dominatrix or something. If she will be assertive in a conversation she will be assertive in the bedroom or so I  would like to believe.

Time is a dialectable derelict
Posted by Bling King

To fathom the fortrighteousness of time one has to contemplate the personification of forthwittial forthwittil. Time forthwittingly will only listen to the commands of its on inner personification to which there is no directional direction or so it would seem but on further inquisitories I have come to realize that there is a forthwittingly forthwittal of which time has pronounced and those commands seem to speak to the nature of to which time corresponds. To review these pronouncements for your own bemusement look at time as if you had it captured it  in a bottle. What would happen? We know on the inside of the bottle time would force the inner workings of the bottle to correspond to times diabolical commands. Causing everything to change to times everlescent rules. however on the outside of the bottle things would not change, everything would stay in constant neutrality or would it? The question remains if there was no time would things still be allowed to happen and if so at what pace and what would dictate the pace at which things would change. There seems to be no rule in place for the dictation of the pace change which takes place. So it would seem that time has decided that factor somehow within itself. There could be a correlation at which things change and the pace being dictated by physics and the amount the physical world can be allowed to change within its own accord of set boundaries. To actually find...Read More

Free from time constraints
Posted by Bling King

 

 

 

There was a time when time did not matter. The thing that was an utmost relevance now was of no matter. The diffrence it made seemed miniscule and now it is constantly dictating everything that takes place before me. What is this thing that controls and makes everything manifest itself to its constraints and why and how does it do this. Time is nothing but the utmost miracle before us. Something that has always had to exist for anything ever to take place. There is no changing its course there is no variance in its absolute everlasting existance. To control time would be the utmost  crown jewel of all accomplishments if indeed it could ever be controlled. The only way I ever see time being manipulated to change its values is to speed up everything that time has interacted with. In order to do such a thing you would have to understand the nature of the objects in question and how they are effected by time. For instance a speeding car will slow down in time without constant force being distrubuted by the engine. To slow down the car one only has to take their foot off the accelarator and gradually time will do the rest but if you could freeze time at the speed at which the car was traveling then time would not  exist because the...Read More

the truth about time
Posted by Bling King

        I have looked at time many times and I have noticed a few components. There is a precise proponent that ushers in a manifestation. Whenever something new is going to happen you can look at that event which is about to take place and precisely predict exactly when it has started. Once you realize a manifestation has taken place you can precisely predict its out come. If you know that a manifestation has started to take place then you will know you are being guided through the realm precisely by the forces of an enlightenment. Throughout time this manifestation will remain constant starting with a beginning and an end and ending in a preconcieved enlightenment. Sometimes an enlightenment can take weeks and some times an enlightenment can take centuries. It depends on how many times that enlightenment has been benounced to the realm. 

 

nothing
Posted by Bling King

I suspect a suffcient of sufficence of suffiacantel suffiance of suffiance of absurdity of absurdanace. In all actual actuality there is an  actual actuality of actualityness in retrospect to the retorospective respect in which every person who has an intellectual intellect can see that the world is a prominance of prominance in which the order will reside as long as the order is maintained. Once that order is relinquished chaos will ensue. For chaos to be a calamity there only needs to be a perspectual perspective of perspectance that escalates the chaos to that height. What would cause that is a person or persons in the realm of the realmatical realmatics looking beyond thier own existance to the existance of there forfathers to see what has become of thier existance. If you look at your own existance for what it is you will see that it is neither logical nor illogical for it makes all the sense of a sensimatical sensematic. As long as you have a reason for your own existance then it is fruitful for you to exist. Once that reason or reasons are gone you will no longer care whether it is you live or die. In the realm in which we live is a prospectus prospectant of prospectantin which all will ensue. To change the prospectus prospectus you need to look to the realm and see what the prospectus prospectant is and manifest it to your own liking. My...Read More

The conclusive conclusion
Posted by Bling King

In all actual reality the realm is manifested of certain procedural procedures that come forth frequently to forthrightous forthrightenous. In the place of predicament I have found that I can properly place things in the procedural sequence unbenowst to people of the realm. In order to conflict the conflictions you have to equate the equation of equationalness in to proper equations. Very simple but also very tedious. You do this by equating the equation into percise preciseness. An example of an equation would be a placement of perdicament of a certain event in which you wish it to be. The next manifestation I could manifest is a manifestual manifestation of manifests of a sequance of certainal circumstances. Put together a sequence by asking the sequence in order to manifest itself and then tell the manifestations to happen in frequence in which they will unfold.

The Unattainable future
Posted by Bling King

     If the future is a grain of sand and its falling through an hour glass nothing in the world can stop it. It will eniquivaocalby blind as to where its going when it comes to its rest it has befallen its fate and will remain where it lay for an eternity knowing nothing about itself or it's surroundings. I am that grain of sand. Nothing ever can change my destiny for only time here makes a diffrence.. To benounce the future is the only way to change ones fortune. The time it takes to make an equivical change remains the utmost mystery of the universe.

🤯In the eyes of myself
Posted by Bling King

 

 

There where three men. All who seemed frightened. They stood on the edge of the canyon looking on as a fourth man tumbled to his death. We could have saved him said one of the men. He should have saved himself said another. The third man just look at them bewildered and brought a handgun to his own head and pulled the trigger. Blood spattered. The two men watched as he slumped to the ground. The first man screamed and the second threw himself to the side of the man on the ground. Why?!! he screamed. It was the only sound heard. Sobbing he looked at the man standing and said you did this! You and your frigging righteous speech about the lives we leave and the sacrifice we must make. Your the devil. I am not the devil said the standing man only the truth. The truth about what? The other man screamed. Your life he said and he jumped.

The man heard a ringing and he sat up slowly. It was over the dream but his thoughts where still on the side of the canyon. How did this happen. How did it all just fade away? The dream came and went in an instant leaving his mind boggled and his eyes heavy. I knew I was there thought the man but how? It was all to familiar the...Read More

The story Elijah and Ellen
Posted by Bling King

The story of Elijah and Ellan. This is the story of Elijah and Ellan. Ellan is a beutiful temptress and Elijah is a dutiful servant of Ellan's. Together the pair fell in love and soon became a duo of in excessible excession. They frolicked in the sun under the rare occurance of rain they took shelter in the arms of each other. One day while hiding from the glares of the sun under an oak tree that provided an abundance of shade they looked into each others souls and realized there where no people suited for each other then the two of them where suited for each other. They basked in the notion that they where the most two compatible souls on the planet. As they where thinking this a giant unforseen acclamaited acclamation occurred. The planet began to tremble and shake beneath them and the stars came out. The sun hid amongst the clouds and everything from start to finish began to take shape. There where huge explosions and giant surges of wind and rain. The two began to run for their shelter knowing at the exact moment the trembling and violent agressions of unacclaimated weather started that they most likely wouldn't make it to see another sunrise. The planet was exploding with molten lava and the tempertures where unbearable as for the two of them could remember they had never seen a winter climate and didn't expect they ever would. The planet had been warming out of...Read More

today was a day of dismal despair
Posted by Bling King

Things have gone down hill drastically now for a very long time. We seem to be some what defeated but yet i know we still have some power and prominance. We are fighting an up hill battle and there is no way forward from here from what i can see. We are trudging along a path that goes nowhere.

⚔️The Greatest Warrior of All Time
Posted by Bling King

 

 

Today i conquered and beat all adverseries there where to beat. Tomorrow new adversaries will arise. I will be ready, there is never a shortage of enemies who wish to dethrone me from the top of the world. I didn't get here by being passive and yeilding to the oppostion. I got here by defeating them both mentally and physically and in entiriety.

In a time of desilute despair
Posted by Bling King

     There was a time when I was in desilute despair. The only thing I had was me myself and I to fall back on. I looked at the person who was my opponent and I knew one of  us was going to die and I was going to do everytrhing I could to make dam sure it wasn't me. I pulled my six shooter from its holster and aimed at the guy looking at me  about 30 yards away. He also went for his gun and in lightning speed he was laid sprawled out on the dirt bleeding and moaning. I had heard a shot but new that it had come from my own gun. He never even got a shot off. I was unscathed and again undeafeted. Anybody who ever tried to kill me was dead and their where over 30 who had tried and failed to kill yours truly.

Gravity
Posted by Bling King

Gravity is the force of nature that pulls cellestrial bodies toward one another. The cause of gravity is the enertia of a bodies movement through space and time. This happens by an object preconcievably traveling through the cosmos at an alarming rate of acceleration. The faster an object travels the more enertia it will build up and then will therefore have a greater ability to move. the more it moves the more other objects will cling to it. the way this can be proved is by taking an object and hurtling it towards another object the two objects would collide do to the enertia pulling them towards each other. Thy would not stay on their current trajectory but their paths would alter towards one another in a greater force than their initial gravitational pull. the best test to accomodate this theory would be tow baseballs flying through the air at speeds over one hundred miles an hour. The baseballs would not interject themselves with one another normally but at this speed would do so do to the balls enertia pulling them towards one another.

:
 

 

Click Here To Buy A Million Secondlife  Avatar Names With UUID Keys List

How to post a website

To post a website to Ning Spruz add this line of code:

 

<p style="text-align: center;"><iframe frameborder="0" height="2000" scrolling="yes" src="https://useme.org/" width="1273"></iframe></p>

 

to the Youtube embed box and change the URL.

 

 

 

:

 

 

:

 

Make money online

   

 
:
Best Writing Blogs On The Internet https://the-nbafinals.com/ Indy 500 Live ESPN FOX CBS NBC SKY SHOWTIME PPV HBO REDDIT https://glasgowvsleinster.blogspot.com/ (*^[FULL]&%) https://livemlbonline.com
Added by sweetunclejim
Jul 12th 2013
http://www.pickwellnessdeal.com/forskolin-keto-cycle/ Been working out my butt at the gym. Hey I hope you like my bikini picture. Please comment. Antique slot machine
Added by Bling King
Mar 26th
Added by SweetRachael
Oct 22nd 2014
nice car..
Added by Bling King
Sep 15th 2012
nice!
Added by Bling King
Sep 15th 2012
cute
Added by Bling King
Sep 15th 2012
whats the question?
Added by Bling King
Sep 12th 2012
sexy
Added by Bling King
Sep 12th 2012
Whatcha think?
Added by Bling King
Aug 29th 2012
What do you think of my car?
Added by Bling King
Aug 29th 2012
Please Message US For Details. please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
obama
Added by Bling King
Aug 16th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
I LOVE YOU!
Added by Bling King
Aug 14th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
awesome!
Added by Bling King
Aug 14th 2012
awesome!
Added by Bling King
Aug 14th 2012
atari
Added by Bling King
Aug 14th 2012
whoa!
Added by Bling King
Aug 9th 2012
You can do it!
Added by Bling King
Aug 9th 2012
Girls girls girls
Added by Bling King
Aug 9th 2012
Hott!
Added by Bling King
Aug 7th 2012
Howard Stern
Added by Bling King
Mar 16th 2012
Harley
Added by Bling King
Mar 3rd 2012
Range Rover
Added by Bling King
Feb 23rd 2012
Hummer
Added by Bling King
Feb 23rd 2012
Added by Bling King
Feb 21st 2012
Bentley C
Added by Bling King
Sep 25th 2011
Attraction
Added by Bling King
Mar 3rd 2013
beatles image
Added by Bling King
Mar 3rd 2013
attraction
Added by Bling King
Mar 3rd 2013
cool image
Added by Bling King
Mar 3rd 2013
pyramid
Added by Bling King
Mar 3rd 2013

This website is powered by Spruz

Live Support