Categories

Rocket

Rocket

 

A rocket is a missile, spacecraft, aircraft or other vehicle that obtains thrust from a rocket engine. Rocket engine exhaust is formed entirely from propellants carried within the rocket before use.[1] Rocket engines work by action and reaction. Rocket engines push rockets forward simply by throwing their exhaust backwards extremely fast.

While comparatively inefficient for low speed use, rockets are relatively lightweight and powerful, capable of generating large accelerations and of attaining extremely high speeds with reasonable efficiency. Rockets are not reliant on the atmosphere and work very well in space.

Rockets for military and recreational uses date back to at least 13th century China.[2] Significant scientific, interplanetary and industrial use did not occur until the 20th century, when rocketry was the enabling technology for the Space Age, including setting foot on the moon. Rockets are now used for fireworks, weaponry, ejection seats, launch vehicles for artificial satellites, human spaceflight, and space exploration.

Chemical rockets are the most common type of high performance rocket and they typically create their exhaust by the combustion of rocket propellant. Chemical rockets store a large amount of energy in an easily released form, and can be very dangerous. However, careful design, testing, construction and use minimizes risks.

 

 

History of rockets

In antiquity

The availability of black powder (gunpowder) to propel projectiles was a precursor to experiments as weapons such as bombs, cannon, incendiary fire arrows and rocket-propelled fire arrows.[nb 1][nb 2] The discovery of gunpowder was probably the product of centuries of alchemical experimentation in which Taoist alchemists were trying to create an elixir of immortality that would allow the person ingesting it to become physically immortal.[5] However, anyone with a wood fire might have observed the acceleration of combustion that accidentally-chosen saltpetre-containing rocks would have produced.

Exactly when the first flights of rockets occurred is contested. Merely lighting a centimeter-sized solid lump of gunpowder on one side can cause it to move via reaction (even without a nozzle for efficiency), so confinement in a tube and other design refinements may easily have followed for the experimentally-minded with ready access to saltpetre.

A problem for dating the first rocket flight is that Chinese fire arrows can be either arrows with explosives attached, or arrows propelled by gunpowder. There were reports of fire arrows and 'iron pots' that could be heard for 5 leagues (25 km, or 15 miles) when they exploded, causing devastation for a radius of 600 meters (2,000 feet), apparently due to shrapnel.[6] A common claim is that the first recorded use of a rocket in battle was by the Chinese in 1232 against the Mongol hordes at Kai Feng Fu.[7] However, the lowering of iron pots there may have been a way for a besieged army to blow up invaders.[nb 3] A scholarly reference occurs in the Ko Chieh Ching Yuan (The Mirror of Research), states that in 998 AD a man named Tang Fu invented a fire arrow of a new kind having an iron head.[7]

Less controversially, one of the earliest devices recorded that used internal-combustion rocket propulsion, was the 'ground-rat,' a type of firework recorded in 1264 as having frightened the Empress-Mother Kung Sheng at a feast held in her honor by her son the Emperor Lizong.[9]

Subsequently, one of the earliest texts to mention the use of rockets was the Huolongjing, written by the Chinese artillery officer Jiao Yu in the mid-14th century. This text also mentioned the use of the first known multistage rocket, the 'fire-dragon issuing from the water' (huo long chu shui), used mostly by the Chinese navy.[10]

Spread of rocket technology

Rocket technology was first known to Europeans following its use by the Mongols Genghis Khan and Ögedei Khan when they conquered parts of Russia, Eastern, and Central Europe. The Mongolians had acquired the Chinese technology by conquest of the northern part of China and by the subsequent employment of Chinese rocketry experts as mercenaries for the Mongol military. Reports of the Battle of Mohi in the year 1241 describe the use of rocket-like weapons by the Mongols against the Magyars.[6] Rocket technology also spread to Korea, with the 15th century wheeled hwacha that would launch singijeon rockets.[citation needed] Additionally, the spread of rockets into Europe was also influenced by the Ottomans at the siege of Constantinople in 1453, although it is very likely that the Ottomans themselves were influenced by the Mongol invasions of the previous few centuries. In their history of rockets published on the Internet, NASA says "Rockets appear in Arab literature in 1258 A.D., describing Mongol invaders' use of them on February 15 to capture the city of Baghdad."[6]

Between 1270 and 1280, Hasan al-Rammah wrote al-furusiyyah wa al-manasib al-harbiyya (The Book of Military Horsemanship and Ingenious War Devices), which included 107 gunpowder recipes, 22 of which are for rockets.[11] According to Ahmad Y Hassan, al-Rammah's recipes were more explosive than rockets used in China at the time.[12][unreliable source?] The terminology used by al-Rammah indicated a Chinese origin for the gunpowder weapons he wrote about, such as rockets and fire lances.[13] Ibn al-Baytar, an Arab from Spain who had immigrated to Egypt, gave the name "snow of China" (Arabic: ثلج الصين‎ thalj al-Sin) to describe saltpetre. Al-Baytar died in 1248.[14][15] The earlier Arab historians call saltpeter "Chinese snow" and " Chinese salt;" [16][17] The Arabs also used the name "Chinese arrows" to refer to rockets.[18][19][20][21][22][23][24] The Arabs attached "Chinese" to various names for gunpowder related objects. "Chinese flowers" was the name for fireworks, while "Chinese Snow" was given to saltpeter and "Chinese arrows" to rockets.[13] While saltpeter was called "Chinese Snow" by Arabs, it was called "Chinese salt" by the Iranians/Persians.[25][26][27][28][29]

The name Rocket comes from the Italian Rocchetta (i.e. little fuse), a name of a small firecracker created by the Italian artificer Muratori in 1379.[30]

Konrad Kyeser described rockets in his famous military treatise Bellifortis around 1405.[31]

Between 1529 and 1556 Conrad Haas wrote a book that described rocket technology that combined fireworks and weapons technologies. This manuscript was discovered in 1961, in the Sibiu public records (Sibiu public records Varia II 374). His work dealt with the theory of motion of multi-stage rockets, different fuel mixtures using liquid fuel, and introduced delta-shape fins and bell-shaped nozzles.[32]

Lagari Hasan Çelebi was a legendary Ottoman aviator who, according to an account written by Evliya Çelebi, made a successful manned rocket flight. Evliya Çelebi purported that in 1633 Lagari Hasan Çelebi launched in a 7-winged rocket using 50 okka (140 lbs) of gunpowder from Sarayburnu, the point below Topkap¹ Palace in Istanbul.

For over two centuries, the work of Polish-Lithuanian Commonwealth nobleman Kazimierz Siemienowicz "Artis Magnae Artilleriae pars prima" ("Great Art of Artillery, the First Part", also known as "The Complete Art of Artillery"), was used in Europe as a basic artillery manual.[33] First printed in Amsterdam in 1650 it was translated to French in 1651, German in 1676, English and Dutch in 1729 and Polish in 1963. The book provided the standard designs for creating rockets, fireballs, and other pyrotechnic devices. It contained a large chapter on caliber, construction, production and properties of rockets (for both military and civil purposes), including multi-stage rockets, batteries of rockets, and rockets with delta wing stabilizers (instead of the common guiding rods ("bottle rockets"), which are also aerodynamic stabilizers but less efficient than fins).

Metal-cylinder rocket artillery

In 1792, the first iron-cased rockets were successfully developed and used by Hyder Ali and his son Tipu Sultan, rulers of the Kingdom of Mysore in India against the larger British East India Company forces during the Anglo-Mysore Wars. The British then took an active interest in the technology and developed it further during the 19th century. The Mysore rockets of this period were much more advanced than the British had previously seen, chiefly because of the use of iron tubes for holding the propellant; this enabled higher thrust and longer range for the missile (up to 2 km range). After Tipu's eventual defeat in the Fourth Anglo-Mysore War and the capture of the Mysore iron rockets, they were influential in British rocket development, inspiring the Congreve rocket, which was soon put into use in the Napoleonic Wars.[34]

Accuracy of early rockets

William Congreve, son of the Comptroller of the Royal Arsenal, Woolwich, London, became a major figure in the field. From 1801, Congreve researched on the original design of Mysore rockets and set on a vigorous development program at the Arsenal's laboratory.[35] Congreve prepared a new propellant mixture, and developed a rocket motor with a strong iron tube with conical nose. This early Congreve rocket weighed about 32 pounds (14.5 kilograms). The Royal Arsenal's first demonstration of solid fuel rockets was in 1805. The rockets were effectively used during the Napoleonic Wars and the War of 1812. Congreve published three books on rocketry.[36]

From there, the use of military rockets spread throughout the western world. At the Battle of Baltimore in 1814, the rockets fired on Fort McHenry by the rocket vessel HMS Erebus were the source of the rockets' red glare described by Francis Scott Key in The Star-Spangled Banner.[37] Rockets were also used in the Battle of Waterloo.[38]

Early rockets were very inaccurate. Without the use of spinning or any gimballing of the thrust, they had a strong tendency to veer sharply off of their intended course. The early Mysorean rockets and their successor British Congreve rockets[35] reduced this somewhat by attaching a long stick to the end of a rocket (similar to modern bottle rockets) to make it harder for the rocket to change course. The largest of the Congreve rockets was the 32-pound (14.5 kg) Carcass, which had a 15-foot (4.6 m) stick. Originally, sticks were mounted on the side, but this was later changed to mounting in the center of the rocket, reducing drag and enabling the rocket to be more accurately fired from a segment of pipe.

The accuracy problem was greatly improved in 1844 when William Hale[39] modified the rocket design so that thrust was slightly vectored, causing the rocket to spin along its axis of travel like a bullet. The Hale rocket removed the need for a rocket stick, travelled further due to reduced air resistance, and was far more accurate.

In 1865 the British Colonel Edward Mounier Boxer built an improved versione of the Congreve rocket placing two rockets in one tube, one behind the other.[40]

Theories of interplanetary rocketry

At the beginning of the 20th Century, there was a burst of scientific investigation into interplanetary travel, largely driven by the inspiration of fiction by writers such as Jules Verne and H.G.Wells. Scientists seized on the rocket as a technology that was able to achieve this in real life.

In 1903, high school mathematics teacher Konstantin Tsiolkovsky (1857–1935), published Исследование мировых пространств реактивными приборами[41] (The Exploration of Cosmic Space by Means of Reaction Devices), the first serious scientific work on space travel. The Tsiolkovsky rocket equation—the principle that governs rocket propulsion—is named in his honor (although it had been discovered previously).[42] He also advocated the use of liquid hydrogen and oxygen for propellant, calculating their maximum exhaust velocity. His work was essentially unknown outside the Soviet Union, but inside the country it inspired further research, experimentation and the formation of the Society for Studies of Interplanetary Travel in 1924.

In 1912, Robert Esnault-Pelterie published a lecture[43] on rocket theory and interplanetary travel. He independently derived Tsiolkovsky's rocket equation, did basic calculations about the energy required to make round trips to the Moon and planets, and he proposed the use of atomic power (i.e. Radium) to power a jet drive.

In 1912 Robert Goddard, inspired from an early age by H.G.Wells, began a serious analysis of rockets, concluding that conventional solid-fuel rockets needed to be improved in three ways. First, fuel should be burned in a small combustion chamber, instead of building the entire propellant container to withstand the high pressures. Second, rockets could be arranged in stages. Finally, the exhaust speed (and thus the efficiency) could be greatly increased to beyond the speed of sound by using a De Laval nozzle. He patented these concepts in 1914.[44] He also independently developed the mathematics of rocket flight.

In 1920, Goddard published these ideas and experimental results in A Method of Reaching Extreme Altitudes.[45] The work included remarks about sending a solid-fuel rocket to the Moon, which attracted worldwide attention and was both praised and ridiculed. A New York Times editorial suggested:

That Professor Goddard, with his 'chair' in Clark College and the countenancing of the Smithsonian Institution, does not know the relation of action to reaction, and of the need to have something better than a vacuum against which to react -- to say that would be absurd. Of course he only seems to lack the knowledge ladled out daily in high schools.

—New York Times, 13 January 1920[46]

In 1923, Hermann Oberth (1894–1989) published Die Rakete zu den Planetenräumen ("The Rocket into Planetary Space"), a version of his doctoral thesis, after the University of Munich rejected it.[47]

In 1924, Tsiolkovsky also wrote about multi-stage rockets, in 'Cosmic Rocket Trains'[48]

Modern rocketry

Pre-World War II

Modern rockets were born when Goddard attached a supersonic (de Laval) nozzle to a liquid-fueled rocket engine's combustion chamber. These nozzles turn the hot gas from the combustion chamber into a cooler, hypersonic, highly directed jet of gas, more than doubling the thrust and raising the engine efficiency from 2% to 64%.[49][50] In 1926, Robert Goddard launched the world's first liquid-fueled rocket in Auburn, Massachusetts.

During the 1920s, a number of rocket research organizations appeared worldwide. In 1927 the German car manufacturer Opel began to research rocket vehicles together with Mark Valier and the solid-fuel rocket builder Friedrich Wilhelm Sander.[51] In 1928, Fritz von Opel drove with a rocket car, the Opel-RAK.1 on the Opel raceway in Rüsselsheim, Germany. In 1928 the Lippisch Ente flew, rocket power was used to launch the manned glider, although it was destroyed on its second flight. In 1929 von Opel started at the Frankfurt-Rebstock airport with the Opel-Sander RAK 1-airplane, which was damaged beyond repair during a hard landing after its first flight.

In the mid-1920s, German scientists had begun experimenting with rockets that used liquid propellants capable of reaching relatively high altitudes and distances. In 1927 and also in Germany, a team of amateur rocket engineers had formed the Verein für Raumschiffahrt (German Rocket Society, or VfR), and in 1931 launched a liquid propellant rocket (using oxygen and gasoline).[52]

From 1931 to 1937 in Russia, extensive scientific work on rocket engine design occurred in Leningrad at the Gas Dynamics Laboratory there. Well-funded and staffed, over 100 experimental engines were built under the direction of Valentin Glushko. The work included regenerative cooling, hypergolic propellant ignition, and fuel injector designs that included swirling and bi-propellant mixing injectors. However, the work was curtailed by Glushko's arrest during Stalinist purges in 1938. Similar work was also done by the Austrian professor Eugen Sänger who worked on rocket-powered spaceplanes such as Silbervogel (sometimes called the 'antipodal' bomber.)[53]

On November 12, 1932 at a farm in Stockton NJ, the American Interplanetary Society's attempt to static fire their first rocket (based on German Rocket Society designs) failed in a fire.[54]

In 1930s, the Reichswehr (which in 1935 became the Wehrmacht) began to take an interest in rocketry.[55] Artillery restrictions imposed by the Treaty of Versailles limited Germany's access to long distance weaponry. Seeing the possibility of using rockets as long-range artillery fire, the Wehrmacht initially funded the VfR team, but because their focus was strictly scientific, created its own research team. At the behest of military leaders, Wernher von Braun, at the time a young aspiring rocket scientist, joined the military (followed by two former VfR members) and developed long-range weapons for use in World War II by Nazi Germany.[56]

World War II

In 1943, production of the V-2 rocket began in Germany. It had an operational range of 300 km (190 mi) and carried a 1,000 kg (2,200 lb) warhead, with an amatol explosive charge. It normally achieved an operational maximum altitude of around 90 km (56 mi), but could achieve 206 km (128 mi) if launched vertically. The vehicle was similar to most modern rockets, with turbopumps, inertial guidance and many other features. Thousands were fired at various Allied nations, mainly Belgium, as well as England and France. While they could not be intercepted, their guidance system design and single conventional warhead meant that it was insufficiently accurate against military targets. A total of 2,754 people in England were killed, and 6,523 were wounded before the launch campaign was ended. There were also 20,000 deaths of slave labour during the construction of V-2s. While it did not significantly affect the course of the war, the V-2 provided a lethal demonstration of the potential for guided rockets as weapons.[57][58]

In parallel with the guided missile programme in Nazi Germany, rockets were also used on aircraft, either for assisting horizontal take-off (JATO), vertical take-off (Bachem Ba 349 "Natter") or for powering them (Me 163,[59] etc.). During the war Germany also developed several guided and unguided air-to-air, ground-to-air and ground-to-ground missiles (see list of World War II guided missiles of Germany).

The Allies rocket programs were much less sophisticated, relying mostly on unguided missiles like the Soviet Katyusha rocket.

Post World War II

At the end of World War II, competing Russian, British, and US military and scientific crews raced to capture technology and trained personnel from the German rocket program at Peenemünde. Russia and Britain had some success, but the United States benefited the most. The US captured a large number of German rocket scientists, including von Braun, and brought them to the United States as part of Operation Overcast.[60] In America, the same rockets that were designed to rain down on Britain were used instead by scientists as research vehicles for developing the new technology further. The V-2 evolved into the American Redstone rocket, used in the early space program.[61]

After the war, rockets were used to study high-altitude conditions, by radio telemetry of temperature and pressure of the atmosphere, detection of cosmic rays, and further research; notably for the Bell X-1 to break the sound barrier. This continued in the US under von Braun and the others, who were destined to become part of the US scientific community.

Independently, in the Soviet Union's space program research continued under the leadership of the chief designer Sergei Korolev.[62] With the help of German technicians, the V-2 was duplicated and improved as the R-1, R-2 and R-5 missiles. German designs were abandoned in the late 1940s, and the foreign workers were sent home. A new series of engines built by Glushko and based on inventions of Aleksei Mihailovich Isaev formed the basis of the first ICBM, the R-7.[63] The R-7 launched the first satellite- Sputnik 1, and later Yuri Gagarin-the first man into space, and the first lunar and planetary probes. This rocket is still in use today. These prestigious events attracted the attention of top politicians, along with additional funds for further research.

One problem that had not been solved was atmospheric reentry. It had been shown that an orbital vehicle easily had enough kinetic energy to vaporize itself, and yet it was known that meteorites can make it down to the ground. The mystery was solved in the US in 1951 when H. Julian Allen and A. J. Eggers, Jr. of the National Advisory Committee for Aeronautics (NACA) made the counterintuitive discovery[64] that a blunt shape (high drag) permitted the most effective heat shield. With this type of shape, around 99% of the energy goes into the air rather than vehicle, and this permitted safe recovery of orbital vehicles.

The Allen and Eggers discovery, though initially treated as a military secret, was eventually published in 1958.[65] The Blunt Body Theory made possible the heat shield designs that were embodied in the Mercury and all other space capsules and space planes, enabling astronauts to survive the fiery re-entry into Earth's atmosphere.

Cold War

Rockets became extremely important militarily as modern intercontinental ballistic missiles (ICBMs) when it was realized that nuclear weapons carried on a rocket vehicle were essentially impossible for existing defense systems to stop once launched, and ICBM/Launch vehicles such as the R-7, Atlas and Titan became the delivery platform of choice for these weapons.

Fueled partly by the Cold War, the 1960s became the decade of rapid development of rocket technology particularly in the Soviet Union (Vostok, Soyuz, Proton) and in the United States (e.g. the X-15[66] and X-20 Dyna-Soar[67] aircraft). There was also significant research in other countries, such as Britain, Japan, Australia, etc., and a growing use of rockets for Space exploration, with pictures returned from the far side of the Moon and unmanned flights for Mars exploration.

In America the manned programmes, Project Mercury, Project Gemini and later the Apollo programme culminated in 1969 with the first manned landing on the moon via the Saturn V, causing the New York Times to retract their earlier editorial implying that spaceflight couldn't work:

Further investigation and experimentation have confirmed the findings of Isaac Newton in the 17th century and it is now definitely established that a rocket can function in a vacuum as well as in an atmosphere. The Times regrets the error.

—New York Times, 17 June 1969 - A Correction[68]

In the 1970s America made further lunar landings, before cancelling the Apollo programme in 1975. The replacement vehicle, the partially reusable 'Space Shuttle' was intended to be cheaper,[69] but this large reduction in costs was largely not achieved. Meanwhile in 1973, the expendable Ariane programme was begun, a launcher that by the year 2000 would capture much of the geosat market.

Current day

Rockets remain a popular military weapon. The use of large battlefield rockets of the V-2 type has given way to guided missiles. However rockets are often used by helicopters and light aircraft for ground attack, being more powerful than machine guns, but without the recoil of a heavy cannon and by the early 1960s air-to-air missiles became favored. Shoulder-launched rocket weapons are widespread in the anti-tank role due to their simplicity, low cost, light weight, accuracy and high level of damage. Current artillery systems such as the MLRS or BM-30 Smerch launch multiple rockets to saturate battlefield targets with munitions.[citation needed]

Commercially, rocketry is the enabler of all space technologies particularly satellites, many of which impact people's everyday lives in almost countless ways.[70]

Scientifically, rocketry has opened a window on the universe, allowing the launch of space probes to explore the solar system and space-based telescopes to obtain a clearer view of the rest of the universe.[71]

However, it is probably manned spaceflight that has predominantly caught the imagination of the public. Vehicles such as the Space Shuttle for scientific research, the Soyuz increasingly for orbital tourism and SpaceShipOne for suborbital tourism may show a trend towards greater commercialisation of manned rocketry.[72]

Types

Vehicle configurations

Rocket vehicles are often constructed in the archetypal tall thin "rocket" shape that takes off vertically, but there are actually many different types of rockets including:[73][74]

Design

A rocket design can be as simple as a cardboard tube filled with black powder, but to make an efficient, accurate rocket or missile involves overcoming a number of difficult problems. The main difficulties include cooling the combustion chamber, pumping the fuel (in the case of a liquid fuel), and controlling and correcting the direction of motion.[78]

Components

Rockets consist of a propellant, a place to put propellant (such as a propellant tank), and a nozzle. They may also have one or more rocket engines, directional stabilization device(s) (such as fins, vernier engines or engine gimbals for thrust vectoring, gyroscopes) and a structure (typically monocoque) to hold these components together. Rockets intended for high speed atmospheric use also have an aerodynamic fairing such as a nose cone, which usually holds the payload.[79]

As well as these components, rockets can have any number of other components, such as wings (rocketplanes), parachutes, wheels (rocket cars), even, in a sense, a person (rocket belt). Vehicles frequently possess navigation systems and guidance systems that typically use satellite navigation and inertial navigation systems.

Engines

Rocket engines employ the principle of jet propulsion.[1] The rocket engines powering rockets come in a great variety of different types, a comprehensive list can be found in rocket engine. Most current rockets are chemically powered rockets (usually internal combustion engines,[80] but some employ a decomposing monopropellant) that emit a hot exhaust gas. A rocket engine can use gas propellants, solid propellant, liquid propellant, or a hybrid mixture of both solid and liquid.[1] Some rockets use heat or pressure that is supplied from a source other than the chemical reaction of propellant(s), such as steam rockets, solar thermal rockets, nuclear thermal rocket engines or simple pressurized rockets such as water rocket or cold gas thrusters.[1] With combustive propellants a chemical reaction is initiated between the fuel and the oxidizer in the combustion chamber, and the resultant hot gases accelerate out of a rocket engine nozzle (or nozzles) at the rearward-facing end of the rocket. The acceleration of these gases through the engine exerts force ("thrust") on the combustion chamber and nozzle, propelling the vehicle (according to Newton's Third Law).[1] This actually happens because the force (pressure times area) on the combustion chamber wall is unbalanced by the nozzle opening; this is not the case in any other direction. The shape of the nozzle also generates force by directing the exhaust gas along the axis of the rocket.

Propellant

Rocket propellant is mass that is stored, usually in some form of propellant tank or casing, prior to being used as the propulsive mass that is ejected from a rocket engine in the form of a fluid jet to produce thrust.[1] For chemical rockets often the propellants are a fuel such as liquid hydrogen or kerosene burned with an oxidizer such as liquid oxygen or nitric acid to produce large volumes of very hot gas. The oxidiser is either kept separate and mixed in the combustion chamber, or comes premixed, as with solid rockets.

Sometimes the propellant is not burned but still undergoes a chemical reaction, and can be a 'monopropellant' such as hydrazine, nitrous oxide or hydrogen peroxide that can be catalytically decomposed to hot gas.

Alternatively, an inert propellant can be used that can be externally heated, such as in steam rocket, solar thermal rocket or nuclear thermal rockets.[1]

For smaller, low performance rockets such as attitude control thrusters where high performance is less necessary, a pressurised fluid is used as propellant that simply escapes the spacecraft through a propelling nozzle.[1]

Uses

Rockets or other similar reaction devices carrying their own propellant must be used when there is no other substance (land, water, or air) or force (gravity, magnetism, light) that a vehicle may usefully employ for propulsion, such as in space. In these circumstances, it is necessary to carry all the propellant to be used.

However, they are also useful in other situations:

Military

Some military weapons use rockets to propel warheads to their targets. A rocket and its payload together are generally referred to as a missile when the weapon has a guidance system (not all missiles use rocket engines, some use other engines such as jets) or as a rocket if it is unguided. Anti-tank and anti-aircraft missiles use rocket engines to engage targets at high speed at a range of several miles, while intercontinental ballistic missiles can be used to deliver multiple nuclear warheads from thousands of miles, and anti-ballistic missiles try to stop them.

Science and research

Sounding rockets are commonly used to carry instruments that take readings from 50 kilometres (31 mi) to 1,500 kilometres (930 mi) above the surface of the Earth, the altitudes between those reachable by weather balloons and satellites.[81]

Rocket engines are also used to propel rocket sleds along a rail at extremely high speed. The world record for this is Mach 8.5.[82]

Spaceflight

Larger rockets are normally launched from a launch pad that provides stable support until a few seconds after ignition. Due to their high exhaust velocity—2,500 to 4,500 m/s (9,000 to 16,000 km/h; 5,600 to 10,000 mph) (Mach ~10+)—rockets are particularly useful when very high speeds are required, such as orbital speed (Mach 24+[83]). Spacecraft delivered into orbital trajectories become artificial satellites, which are used for many commercial purposes. Indeed, rockets remain the only way to launch spacecraft into orbit and beyond.[84] They are also used to rapidly accelerate spacecraft when they change orbits or de-orbit for landing. Also, a rocket may be used to soften a hard parachute landing immediately before touchdown (see retrorocket).

Continued on page 2

Author:Bling King
Published:Dec 23rd 2013
Modified:Dec 23rd 2013
Please Sign In to Add a Comment
or

 

 

Add Member

Add video

Add a Chat Room

Add Photos

Add Website Link

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Alcatraz

In Room: 0
The prison
 

 

 

 

California

In Room: 0
Welcome
 

CONCERT

In Room: 0
This is the video room for all online live concerts
 

Darrell on camera

In Room: 1
video messanger with Darrell here.
 

General Chat

In Room: 0
 

Gillian Howards

In Room: 0
A place to chat with me.
 

Grand Canyon

In Room: 0
Thee Grand Canyon
 

Ground Zero, New York City

Harvard University

In Room: 0
 

Jamie Perrins

In Room: 0
This is a place to talk with me.
 

Jessica Mott

In Room: 0
Talk to me here.
 
Categories

:
:
:

Image result for banner ad

Image result for banner ad                                        Image result for banner adImage result for banner ad                                 Image result for banner ad

Voting Poll
:
There is no such thing as time
Posted by Bling King

    

     Upon further ponderance I have come to the conclusion that time does not exist except in the law of physics. I have come to this conclusion through the observation of how things change and why they change at the pace in which they change. To me it seems that every change that takes place  in the universe is not dictated by time but rather physics. It is the law of physics that dictates the rate and speed at which all things change. For example if you have a car  that is traveling at 100 miles an hour the speed at  which the car travels is all dictated by physical changes and therfor controlled by the law of physics..Therfor it seems that for any change to take place all you need is physics and the law of physics that governs the physical changes. Time does not need be a factor and bears no relavance. As long as we have the law of physics everything will happen in accordance with those laws.

The composition of time
Posted by Bling King

   

    Time has 3 components. A front a middle and a rear. In the front time has what appears to be something of perspectual perspectualness that will move things forward at a set forth proponent. This part of time is easy to see and witness. However it is not easy to predict at which point time will make forward momentum happen. It would seem that this forward momentum is always in inactment but I would disagree with this. To me it seems more as if time interacts with things on its own accord leaving somethings unchanged for long standing periods of time. An example of this would be how time occasionally interacts with the speed of light. The speed of light remains constant but occasionally time will manifest itself into the equation and make modifications of the speed that light travels. For instance light will move forward forthwittingly at a billion miles a second but if it encounters any kind of resistance then time will inject itself and change the speed at which it was moving. Which leads me to the assumption that in order for time to inject itself into any equation a proponent has to take place that makes a physical change that would cause time to interject itself. If no physical change takes place than time has also not been a factor.

    The middle proponent of time is the area in which time is manipulating  the change that takes...Read More

👄What turns me on
Posted by Bling King

    I get turned on by some funny stuff. I'm not really into like full blown kinkiness or at least I wouldn't consider myself to be a kinky person but I do have a few fetishes. Some of them are a little out of the ordinary. For instance I have this one fetish about being tied up  and thrown in the ocean and then rescued by a mermaid. I think this fantasy comes from when I was a kid and I used to dream of mermaids and always wanted to meet one. Well one day its gonna happen. Now don't go telling me mermaids don't exist. You don't know cause they are in fact real and as soon as I meet one I will prove it to you. As far as some of my other turn ons  I guess what really gets me excited is people who  tell other people to shut the fuck up. I love when a woman just looks at a man and tells him to shut his mouth. To me thats a big turn on because the woman seems assertive like a dominatrix or something. If she will be assertive in a conversation she will be assertive in the bedroom or so I  would like to believe.

Time is a dialectable derelict
Posted by Bling King

To fathom the fortrighteousness of time one has to contemplate the personification of forthwittial forthwittil. Time forthwittingly will only listen to the commands of its on inner personification to which there is no directional direction or so it would seem but on further inquisitories I have come to realize that there is a forthwittingly forthwittal of which time has pronounced and those commands seem to speak to the nature of to which time corresponds. To review these pronouncements for your own bemusement look at time as if you had it captured it  in a bottle. What would happen? We know on the inside of the bottle time would force the inner workings of the bottle to correspond to times diabolical commands. Causing everything to change to times everlescent rules. however on the outside of the bottle things would not change, everything would stay in constant neutrality or would it? The question remains if there was no time would things still be allowed to happen and if so at what pace and what would dictate the pace at which things would change. There seems to be no rule in place for the dictation of the pace change which takes place. So it would seem that time has decided that factor somehow within itself. There could be a correlation at which things change and the pace being dictated by physics and the amount the physical world can be allowed to change within its own accord of set boundaries. To actually find...Read More

Free from time constraints
Posted by Bling King

 

 

 

There was a time when time did not matter. The thing that was an utmost relevance now was of no matter. The diffrence it made seemed miniscule and now it is constantly dictating everything that takes place before me. What is this thing that controls and makes everything manifest itself to its constraints and why and how does it do this. Time is nothing but the utmost miracle before us. Something that has always had to exist for anything ever to take place. There is no changing its course there is no variance in its absolute everlasting existance. To control time would be the utmost  crown jewel of all accomplishments if indeed it could ever be controlled. The only way I ever see time being manipulated to change its values is to speed up everything that time has interacted with. In order to do such a thing you would have to understand the nature of the objects in question and how they are effected by time. For instance a speeding car will slow down in time without constant force being distrubuted by the engine. To slow down the car one only has to take their foot off the accelarator and gradually time will do the rest but if you could freeze time at the speed at which the car was traveling then time would not  exist because the...Read More

the truth about time
Posted by Bling King

        I have looked at time many times and I have noticed a few components. There is a precise proponent that ushers in a manifestation. Whenever something new is going to happen you can look at that event which is about to take place and precisely predict exactly when it has started. Once you realize a manifestation has taken place you can precisely predict its out come. If you know that a manifestation has started to take place then you will know you are being guided through the realm precisely by the forces of an enlightenment. Throughout time this manifestation will remain constant starting with a beginning and an end and ending in a preconcieved enlightenment. Sometimes an enlightenment can take weeks and some times an enlightenment can take centuries. It depends on how many times that enlightenment has been benounced to the realm. 

 

nothing
Posted by Bling King

I suspect a suffcient of sufficence of suffiacantel suffiance of suffiance of absurdity of absurdanace. In all actual actuality there is an  actual actuality of actualityness in retrospect to the retorospective respect in which every person who has an intellectual intellect can see that the world is a prominance of prominance in which the order will reside as long as the order is maintained. Once that order is relinquished chaos will ensue. For chaos to be a calamity there only needs to be a perspectual perspective of perspectance that escalates the chaos to that height. What would cause that is a person or persons in the realm of the realmatical realmatics looking beyond thier own existance to the existance of there forfathers to see what has become of thier existance. If you look at your own existance for what it is you will see that it is neither logical nor illogical for it makes all the sense of a sensimatical sensematic. As long as you have a reason for your own existance then it is fruitful for you to exist. Once that reason or reasons are gone you will no longer care whether it is you live or die. In the realm in which we live is a prospectus prospectant of prospectantin which all will ensue. To change the prospectus prospectus you need to look to the realm and see what the prospectus prospectant is and manifest it to your own liking. My...Read More

The conclusive conclusion
Posted by Bling King

In all actual reality the realm is manifested of certain procedural procedures that come forth frequently to forthrightous forthrightenous. In the place of predicament I have found that I can properly place things in the procedural sequence unbenowst to people of the realm. In order to conflict the conflictions you have to equate the equation of equationalness in to proper equations. Very simple but also very tedious. You do this by equating the equation into percise preciseness. An example of an equation would be a placement of perdicament of a certain event in which you wish it to be. The next manifestation I could manifest is a manifestual manifestation of manifests of a sequance of certainal circumstances. Put together a sequence by asking the sequence in order to manifest itself and then tell the manifestations to happen in frequence in which they will unfold.

The Unattainable future
Posted by Bling King

     If the future is a grain of sand and its falling through an hour glass nothing in the world can stop it. It will eniquivaocalby blind as to where its going when it comes to its rest it has befallen its fate and will remain where it lay for an eternity knowing nothing about itself or it's surroundings. I am that grain of sand. Nothing ever can change my destiny for only time here makes a diffrence.. To benounce the future is the only way to change ones fortune. The time it takes to make an equivical change remains the utmost mystery of the universe.

🤯In the eyes of myself
Posted by Bling King

 

 

There where three men. All who seemed frightened. They stood on the edge of the canyon looking on as a fourth man tumbled to his death. We could have saved him said one of the men. He should have saved himself said another. The third man just look at them bewildered and brought a handgun to his own head and pulled the trigger. Blood spattered. The two men watched as he slumped to the ground. The first man screamed and the second threw himself to the side of the man on the ground. Why?!! he screamed. It was the only sound heard. Sobbing he looked at the man standing and said you did this! You and your frigging righteous speech about the lives we leave and the sacrifice we must make. Your the devil. I am not the devil said the standing man only the truth. The truth about what? The other man screamed. Your life he said and he jumped.

The man heard a ringing and he sat up slowly. It was over the dream but his thoughts where still on the side of the canyon. How did this happen. How did it all just fade away? The dream came and went in an instant leaving his mind boggled and his eyes heavy. I knew I was there thought the man but how? It was all to familiar the...Read More

The story Elijah and Ellen
Posted by Bling King

The story of Elijah and Ellan. This is the story of Elijah and Ellan. Ellan is a beutiful temptress and Elijah is a dutiful servant of Ellan's. Together the pair fell in love and soon became a duo of in excessible excession. They frolicked in the sun under the rare occurance of rain they took shelter in the arms of each other. One day while hiding from the glares of the sun under an oak tree that provided an abundance of shade they looked into each others souls and realized there where no people suited for each other then the two of them where suited for each other. They basked in the notion that they where the most two compatible souls on the planet. As they where thinking this a giant unforseen acclamaited acclamation occurred. The planet began to tremble and shake beneath them and the stars came out. The sun hid amongst the clouds and everything from start to finish began to take shape. There where huge explosions and giant surges of wind and rain. The two began to run for their shelter knowing at the exact moment the trembling and violent agressions of unacclaimated weather started that they most likely wouldn't make it to see another sunrise. The planet was exploding with molten lava and the tempertures where unbearable as for the two of them could remember they had never seen a winter climate and didn't expect they ever would. The planet had been warming out of...Read More

today was a day of dismal despair
Posted by Bling King

Things have gone down hill drastically now for a very long time. We seem to be some what defeated but yet i know we still have some power and prominance. We are fighting an up hill battle and there is no way forward from here from what i can see. We are trudging along a path that goes nowhere.

⚔️The Greatest Warrior of All Time
Posted by Bling King

 

 

Today i conquered and beat all adverseries there where to beat. Tomorrow new adversaries will arise. I will be ready, there is never a shortage of enemies who wish to dethrone me from the top of the world. I didn't get here by being passive and yeilding to the oppostion. I got here by defeating them both mentally and physically and in entiriety.

In a time of desilute despair
Posted by Bling King

     There was a time when I was in desilute despair. The only thing I had was me myself and I to fall back on. I looked at the person who was my opponent and I knew one of  us was going to die and I was going to do everytrhing I could to make dam sure it wasn't me. I pulled my six shooter from its holster and aimed at the guy looking at me  about 30 yards away. He also went for his gun and in lightning speed he was laid sprawled out on the dirt bleeding and moaning. I had heard a shot but new that it had come from my own gun. He never even got a shot off. I was unscathed and again undeafeted. Anybody who ever tried to kill me was dead and their where over 30 who had tried and failed to kill yours truly.

Gravity
Posted by Bling King

Gravity is the force of nature that pulls cellestrial bodies toward one another. The cause of gravity is the enertia of a bodies movement through space and time. This happens by an object preconcievably traveling through the cosmos at an alarming rate of acceleration. The faster an object travels the more enertia it will build up and then will therefore have a greater ability to move. the more it moves the more other objects will cling to it. the way this can be proved is by taking an object and hurtling it towards another object the two objects would collide do to the enertia pulling them towards each other. Thy would not stay on their current trajectory but their paths would alter towards one another in a greater force than their initial gravitational pull. the best test to accomodate this theory would be tow baseballs flying through the air at speeds over one hundred miles an hour. The baseballs would not interject themselves with one another normally but at this speed would do so do to the balls enertia pulling them towards one another.

:
 

 

Click Here To Buy A Million Secondlife  Avatar Names With UUID Keys List

How to post a website

To post a website to Ning Spruz add this line of code:

 

<p style="text-align: center;"><iframe frameborder="0" height="2000" scrolling="yes" src="https://useme.org/" width="1273"></iframe></p>

 

to the Youtube embed box and change the URL.

 

 

 

:

 

 

:

 

Make money online

   

 
:
Best Writing Blogs On The Internet https://the-nbafinals.com/ Indy 500 Live ESPN FOX CBS NBC SKY SHOWTIME PPV HBO REDDIT https://glasgowvsleinster.blogspot.com/ (*^[FULL]&%) https://livemlbonline.com
Added by sweetunclejim
Jul 12th 2013
http://www.pickwellnessdeal.com/forskolin-keto-cycle/ Been working out my butt at the gym. Hey I hope you like my bikini picture. Please comment. Antique slot machine
Added by Bling King
Mar 26th
Added by SweetRachael
Oct 22nd 2014
nice car..
Added by Bling King
Sep 15th 2012
nice!
Added by Bling King
Sep 15th 2012
cute
Added by Bling King
Sep 15th 2012
whats the question?
Added by Bling King
Sep 12th 2012
sexy
Added by Bling King
Sep 12th 2012
Whatcha think?
Added by Bling King
Aug 29th 2012
What do you think of my car?
Added by Bling King
Aug 29th 2012
Please Message US For Details. please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
obama
Added by Bling King
Aug 16th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
I LOVE YOU!
Added by Bling King
Aug 14th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
awesome!
Added by Bling King
Aug 14th 2012
awesome!
Added by Bling King
Aug 14th 2012
atari
Added by Bling King
Aug 14th 2012
whoa!
Added by Bling King
Aug 9th 2012
You can do it!
Added by Bling King
Aug 9th 2012
Girls girls girls
Added by Bling King
Aug 9th 2012
Hott!
Added by Bling King
Aug 7th 2012
Howard Stern
Added by Bling King
Mar 16th 2012
Harley
Added by Bling King
Mar 3rd 2012
Range Rover
Added by Bling King
Feb 23rd 2012
Hummer
Added by Bling King
Feb 23rd 2012
Added by Bling King
Feb 21st 2012
Bentley C
Added by Bling King
Sep 25th 2011
Attraction
Added by Bling King
Mar 3rd 2013
beatles image
Added by Bling King
Mar 3rd 2013
attraction
Added by Bling King
Mar 3rd 2013
cool image
Added by Bling King
Mar 3rd 2013
pyramid
Added by Bling King
Mar 3rd 2013

This website is powered by Spruz

Live Support