Categories

Robotics

Robotics

From Wikipedia, the free encyclopedia
The Shadow robot hand system
A Pick and Place robot in a factory


Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots.[3] Robotics is related to the sciences of electronics, engineering, mechanics, and software.[4]

[edit] Etymology

The word robotics was derived from the word robot, which was introduced to the public by Czech writer Karel Čapek in his play R.U.R. (Rossum's Universal Robots), which premiered in 1921.[5]

According to the Oxford English Dictionary, the word robotics was first used in print by Isaac Asimov, in his science fiction short story "Liar!", published in May 1941 in Astounding Science Fiction. Asimov was unaware that he was coining the term; since the science and technology of electrical devices is electronics, he assumed robotics already referred to the science and technology of robots. In some of Asimov's other works, he states that the first use of the word robotics was in his short story Runaround (Astounding Science Fiction, March 1942).[6][7] However, the word robotics appears in "Liar!"

[edit] History

Stories of artificial helpers and companions and attempts to create them have a long history.

A scene from Karel Čapek's 1920 play R.U.R. (Rossum's Universal Robots), showing three robots

The word robot was introduced to the public by the Czech writer Karel Čapek in his play R.U.R. (Rossum's Universal Robots), published in 1920.[5] The play begins in a factory that makes artificial people called robots creatures who can be mistaken for humans – though they are closer to the modern ideas of androids. Karel Čapek himself did not coin the word. He wrote a short letter in reference to an etymology in the Oxford English Dictionary in which he named his brother Josef Čapek as its actual originator.[5]

In 1927 the Maschinenmensch ("machine-human") gynoid humanoid robot (also called "Parody", "Futura", "Robotrix", or the "Maria impersonator") was the first and perhaps the most memorable depiction of a robot ever to appear on film was played by German actress Brigitte Helm) in Fritz Lang's film Metropolis.

In 1942 the science fiction writer Isaac Asimov formulated his Three Laws of Robotics and, in the process of doing so, coined the word "robotics" (see details in "Etymology" section below).

In 1948 Norbert Wiener formulated the principles of cybernetics, the basis of practical robotics.

Fully autonomous robots only appeared in the second half of the 20th century. The first digitally operated and programmable robot, the Unimate, was installed in 1961 to lift hot pieces of metal from a die casting machine and stack them. Commercial and industrial robots are widespread today and used to perform jobs more cheaply, or more accurately and reliably, than humans. They are also employed in jobs which are too dirty, dangerous, or dull to be suitable for humans. Robots are widely used in manufacturing, assembly, packing and packaging, transport, earth and space exploration, surgery, weaponry, laboratory research, safety, and the mass production of consumer and industrial goods.[8]

Date Significance Robot Name Inventor
Third century B.C. and earlier One of the earliest descriptions of automata appears in the Lie Zi text, on a much earlier encounter between King Mu of Zhou (1023-957 BC) and a mechanical engineer known as Yan Shi, an 'artificer'. The latter allegedly presented the king with a life-size, human-shaped figure of his mechanical handiwork.[9]   Yan Shi
First century A.D. and earlier Descriptions of more than 100 machines and automata, including a fire engine, a wind organ, a coin-operated machine, and a steam-powered engine, in Pneumatica and Automata by Heron of Alexandria   Ctesibius, Philo of Byzantium, Heron of Alexandria, and others
1206 Created early humanoid automata, programmable automaton band[10] Robot band, hand-washing automaton,[11] automated moving peacocks[12] Al-Jazari
1495 Designs for a humanoid robot Mechanical knight Leonardo da Vinci
1738 Mechanical duck that was able to eat, flap its wings, and excrete Digesting Duck Jacques de Vaucanson
1898 Nikola Tesla demonstrates first radio-controlled vessel. Teleautomaton Nikola Tesla
1921 First fictional automatons called "robots" appear in the play R.U.R. Rossum's Universal Robots Karel Čapek
1930s Humanoid robot exhibited at the 1939 and 1940 World's Fairs Elektro Westinghouse Electric Corporation
1948 Simple robots exhibiting biological behaviors[13] Elsie and Elmer William Grey Walter
1956 First commercial robot, from the Unimation company founded by George Devol and Joseph Engelberger, based on Devol's patents[14] Unimate George Devol
1961 First installed industrial robot. Unimate George Devol
1963 First palletizing robot[15] Palletizer Fuji Yusoki Kogyo
1973 First industrial robot with six electromechanically driven axes[16] Famulus KUKA Robot Group
1975 Programmable universal manipulation arm, a Unimation product PUMA Victor Scheinman

[edit] Components

[edit] Power source

At present; mostly (lead-acid) batteries are used, but potential power sources could be:

  • pneumatic (compressed gases)
  • hydraulics (compressed liquids)
  • flywheel energy storage
  • organic garbage (through anaerobic digestion)
  • faeces (human, animal); may be interesting in a military context as faeces of small combat groups may be reused for the energy requirements of the robot assistant (see DEKA's project Slingshot Stirling engine on how the system would operate)
  • still unproven energy sources: for example Nuclear fusion, as yet not used in nuclear reactors whereas Nuclear fission is proven (although there are not many robots using it as a power source apart from the Chinese rover tests.[17]).
  • radioactive source (such as with the proposed Ford car of the '50s); to those proposed in movies such as Red Planet

[edit] Actuation

A robotic leg powered by Air Muscles

Actuators are like the "muscles" of a robot, the parts which convert stored energy into movement. By far the most popular actuators are electric motors that spin a wheel or gear, and linear actuators that control industrial robots in factories. But there are some recent advances in alternative types of actuators, powered by electricity, chemicals, or compressed air:

[edit] Electric motors

The vast majority of robots use electric motors, often brushed and brushless DC motors in portable robots or AC motors in industrial robots and CNC machines.

[edit] Linear actuators

Various types of linear actuators move in and out instead of by spinning, particularly when very large forces are needed such as with industrial robotics. They are typically powered by compressed air (pneumatic actuator) or an oil (hydraulic actuator).

[edit] Series elastic actuators

A spring can be designed as part of the motor actuator, to allow improved force control. It has been used in various robots, particularly walking humanoid robots.[18]

[edit] Air muscles

Pneumatic artificial muscles, also known as air muscles, are special tubes that contract (typically up to 40%) when air is forced inside it. They have been used for some robot applications.[19][20]

[edit] Muscle wire

Muscle wire, also known as Shape Memory Alloy, Nitinol or Flexinol Wire, is a material that contracts slightly (typically under 5%) when electricity runs through it. They have been used for some small robot applications.[21][22]

[edit] Electroactive polymers

EAPs or EPAMs are a new plastic material that can contract substantially (up to 400%) from electricity, and have been used in facial muscles and arms of humanoid robots,[23] and to allow new robots to float,[24] fly, swim or walk.[25]

[edit] Piezo motors

A recent alternative to DC motors are piezo motors or ultrasonic motors. These work on a fundamentally different principle, whereby tiny piezoceramic elements, vibrating many thousands of times per second, cause linear or rotary motion. There are different mechanisms of operation; one type uses the vibration of the piezo elements to walk the motor in a circle or a straight line.[26] Another type uses the piezo elements to cause a nut to vibrate and drive a screw. The advantages of these motors are nanometer resolution, speed, and available force for their size.[27] These motors are already available commercially, and being used on some robots.[28][29]

[edit] Elastic nanotubes

Elastic nanotubes are a promising artificial muscle technology in early-stage experimental development. The absence of defects in carbon nanotubes enables these filaments to deform elastically by several percent, with energy storage levels of perhaps 10 J/cm3 for metal nanotubes. Human biceps could be replaced with an 8 mm diameter wire of this material. Such compact "muscle" might allow future robots to outrun and outjump humans.[30]

[edit] Sensing

[edit] Touch

Current robotic and prosthetic hands receive far less tactile information than the human hand. Recent research has developed a tactile sensor array that mimics the mechanical properties and touch receptors of human fingertips.[31][32] The sensor array is constructed as a rigid core surrounded by conductive fluid contained by an elastomeric skin. Electrodes are mounted on the surface of the rigid core and are connected to an impedance-measuring device within the core. When the artificial skin touches an object the fluid path around the electrodes is deformed, producing impedance changes that map the forces received from the object. The researchers expect that an important function of such artificial fingertips will be adjusting robotic grip on held objects.

Scientists from several European countries and Israel developed a prosthetic hand in 2009, called SmartHand, which functions like a real one—allowing patients to write with it, type on a keyboard, play piano and perform other fine movements. The prosthesis has sensors which enable the patient to sense real feeling in its fingertips.[33]

[edit] Vision

Computer vision is the science and technology of machines that see. As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. The image data can take many forms, such as video sequences and views from cameras.

In most practical computer vision applications, the computers are pre-programmed to solve a particular task, but methods based on learning are now becoming increasingly common.

Computer vision systems rely on image sensors which detect electromagnetic radiation which is typically in the form of either visible light or infra-red light. The sensors are designed using solid-state physics. The process by which light propagates and reflects off surfaces is explained using optics. Sophisticated image sensors even require quantum mechanics to provide a complete understanding of the image formation process.

There is a subfield within computer vision where artificial systems are designed to mimic the processing and behavior of biological systems, at different levels of complexity. Also, some of the learning-based methods developed within computer vision have their background in biology.

[edit] Manipulation

Robots which must work in the real world require some way to manipulate objects; pick up, modify, destroy, or otherwise have an effect. Thus the "hands" of a robot are often referred to as end effectors,[34] while the "arm" is referred to as a manipulator.[35] Most robot arms have replaceable effectors, each allowing them to perform some small range of tasks. Some have a fixed manipulator which cannot be replaced, while a few have one very general purpose manipulator, for example a humanoid hand.

For the definitive guide to all forms of robot end-effectors, their design, and usage consult the book "Robot Grippers".[36]

[edit] Mechanical Grippers

One of the most common effectors is the gripper. In its simplest manifestation it consists of just two fingers which can open and close to pick up and let go of a range of small objects. Fingers can for example be made of a chain with a metal wire run through it.[37] See Shadow Hand.

[edit] Vacuum Grippers

Vacuum grippers are very simple astrictive[38] devices, but can hold very large loads provided the prehension surface is smooth enough to ensure suction.

Pick and place robots for electronic components and for large objects like car windscreens, often use very simple vacuum grippers.

[edit] General purpose effectors

Some advanced robots are beginning to use fully humanoid hands, like the Shadow Hand, MANUS,[39] and the Schunk hand.[40] These highly dexterous manipulators, with as many as 20 degrees of freedom and hundreds of tactile sensors.[41]

[edit] Locomotion

[edit] Rolling robots

Segway in the Robot museum in Nagoya.

For simplicity most mobile robots have four wheels or a number of continuous tracks. Some researchers have tried to create more complex wheeled robots with only one or two wheels. These can have certain advantages such as greater efficiency and reduced parts, as well as allowing a robot to navigate in confined places that a four wheeled robot would not be able to.

[edit] Two-wheeled balancing robots

Balancing robots generally use a gyroscope to detect how much a robot is falling and then drive the wheels proportionally in the opposite direction, to counter-balance the fall at hundreds of times per second, based on the dynamics of an inverted pendulum.[42] Many different balancing robots have been designed.[43] While the Segway is not commonly thought of as a robot, it can be thought of as a component of a robot, such as NASA's Robonaut that has been mounted on a Segway.[44]

[edit] One-wheeled balancing robots

A one-wheeled balancing robot is an extension of a two-wheeled balancing robot so that it can move in any 2D direction using a round ball as its only wheel. Several one-wheeled balancing robots have been designed recently, such as Carnegie Mellon University's "Ballbot" that is the approximate height and width of a person, and Tohoku Gakuin University's "BallIP".[45] Because of the long, thin shape and ability to maneuver in tight spaces, they have the potential to function better than other robots in environments with people.[46]

[edit] Spherical orb robots

Several attempts have been made in robots that are completely inside a spherical ball, either by spinning a weight inside the ball,[47][48] or by rotating the outer shells of the sphere.[49][50] These have also been referred to as an orb bot [51] or a ball bot[52][53]

[edit] Six-wheeled robots

Using six wheels instead of four wheels can give better traction or grip in outdoor terrain such as on rocky dirt or grass.

[edit] Tracked robots

Tank tracks provide even more traction than a six-wheeled robot. Tracked wheels behave as if they were made of hundreds of wheels, therefore are very common for outdoor and military robots, where the robot must drive on very rough terrain. However, they are difficult to use indoors such as on carpets and smooth floors. Examples include NASA's Urban Robot "Urbie".[54]

[edit] Walking applied to robots

iCub robot, designed by the RobotCub Consortium

Walking is a difficult and dynamic problem to solve. Several robots have been made which can walk reliably on two legs, however none have yet been made which are as robust as a human. Many other robots have been built that walk on more than two legs, due to these robots being significantly easier to construct.[55][56] Hybrids too have been proposed in movies such as I, Robot, where they walk on 2 legs and switch to 4 (arms+legs) when going to a sprint. Typically, robots on 2 legs can walk well on flat floors and can occasionally walk up stairs. None can walk over rocky, uneven terrain. Some of the methods which have been tried are:

[edit] ZMP Technique

The Zero Moment Point (ZMP) is the algorithm used by robots such as Honda's ASIMO. The robot's onboard computer tries to keep the total inertial forces (the combination of earth's gravity and the acceleration and deceleration of walking), exactly opposed by the floor reaction force (the force of the floor pushing back on the robot's foot). In this way, the two forces cancel out, leaving no moment (force causing the robot to rotate and fall over).[57] However, this is not exactly how a human walks, and the difference is obvious to human observers, some of whom have pointed out that ASIMO walks as if it needs the lavatory.[58][59][60] ASIMO's walking algorithm is not static, and some dynamic balancing is used (see below). However, it still requires a smooth surface to walk on.

[edit] Hopping

Several robots, built in the 1980s by Marc Raibert at the MIT Leg Laboratory, successfully demonstrated very dynamic walking. Initially, a robot with only one leg, and a very small foot, could stay upright simply by hopping. The movement is the same as that of a person on a pogo stick. As the robot falls to one side, it would jump slightly in that direction, in order to catch itself.[61] Soon, the algorithm was generalised to two and four legs. A bipedal robot was demonstrated running and even performing somersaults.[62] A quadruped was also demonstrated which could trot, run, pace, and bound.[63] For a full list of these robots, see the MIT Leg Lab Robots page.

[edit] Dynamic Balancing (controlled falling)

A more advanced way for a robot to walk is by using a dynamic balancing algorithm, which is potentially more robust than the Zero Moment Point technique, as it constantly monitors the robot's motion, and places the feet in order to maintain stability.[64] This technique was recently demonstrated by Anybots' Dexter Robot,[65] which is so stable, it can even jump.[66] Another example is the TU Delft Flame.

[edit] Passive Dynamics

Perhaps the most promising approach utilizes passive dynamics where the momentum of swinging limbs is used for greater efficiency. It has been shown that totally unpowered humanoid mechanisms can walk down a gentle slope, using only gravity to propel themselves. Using this technique, a robot need only supply a small amount of motor power to walk along a flat surface or a little more to walk up a hill. This technique promises to make walking robots at least ten times more efficient than ZMP walkers, like ASIMO.[67][68]

[edit] Other methods of locomotion

[edit] Flying

A modern passenger airliner is essentially a flying robot, with two humans to manage it. The autopilot can control the plane for each stage of the journey, including takeoff, normal flight, and even landing.[69] Other flying robots are uninhabited, and are known as unmanned aerial vehicles (UAVs). They can be smaller and lighter without a human pilot onboard, and fly into dangerous territory for military surveillance missions. Some can even fire on targets under command. UAVs are also being developed which can fire on targets automatically, without the need for a command from a human. Other flying robots include cruise missiles, the Entomopter, and the Epson micro helicopter robot. Robots such as the Air Penguin, Air Ray, and Air Jelly have lighter-than-air bodies, propelled by paddles, and guided by sonar.

Two robot snakes. Left one has 64 motors (with 2 degrees of freedom per segment), the right one 10.
[edit] Snaking

Several snake robots have been successfully developed. Mimicking the way real snakes move, these robots can navigate very confined spaces, meaning they may one day be used to search for people trapped in collapsed buildings.[70] The Japanese ACM-R5 snake robot[71] can even navigate both on land and in water.[72]

[edit] Skating

A small number of skating robots have been developed, one of which is a multi-mode walking and skating device. It has four legs, with unpowered wheels, which can either step or roll.[73] Another robot, Plen, can use a miniature skateboard or rollerskates, and skate across a desktop.[74]

[edit] Climbing

Several different approaches have been used to develop robots that have the ability to climb vertical surfaces. One approach mimicks the movements of a human climber on a wall with protrusions; adjusting the center of mass and moving each limb in turn to gain leverage. An example of this is Capuchin,[75] built by Stanford University, California. Another approach uses the specialised toe pad method of wall-climbing geckoes, which can run on smooth surfaces such as vertical glass. Examples of this approach include Wallbot [76] and Stickybot.[77] China's "Technology Daily" November 15, 2008 reported New Concept Aircraft (ZHUHAI) Co., Ltd. Dr. Li Hiu Yeung and his research group have recently successfully developed the bionic gecko robot "Speedy Freelander".According to Dr. Li introduction, this gecko robot can rapidly climbing up and down in a variety of building walls, ground and vertical wall fissure or walking upside down on the ceiling, it is able to adapt on smooth glass, rough or sticky dust walls as well as the various surface of metallic materials and also can automatically identify obstacles, circumvent the bypass and flexible and realistic movements. Its flexibility and speed are comparable to the natural gecko. A third approach is to mimick the motion of a snake climbing a pole[citation needed].

[edit] Swimming (like a fish)

It is calculated that when swimming some fish can achieve a propulsive efficiency greater than 90%.[78] Furthermore, they can accelerate and maneuver far better than any man-made boat or submarine, and produce less noise and water disturbance. Therefore, many researchers studying underwater robots would like to copy this type of locomotion.[79] Notable examples are the Essex University Computer Science Robotic Fish,[80] and the Robot Tuna built by the Institute of Field Robotics, to analyze and mathematically model thunniform motion.[81] The Aqua Penguin, designed and built by Festo of Germany, copies the streamlined shape and propulsion by front "flippers" of penguins. Festo have also built the Aqua Ray and Aqua Jelly, which emulate the locomotion of manta ray, and jellyfish, respectively.

[edit] Environmental interaction and navigation

RADAR, GPS, LIDAR, ... are all combined to provide proper navigation and obstacle avoidance

Though a significant percentage of robots in commission today are either human controlled, or operate in a static environment, there is an increasing interest in robots that can operate autonomously in a dynamic environment. These robots require some combination of navigation hardware and software in order to traverse their environment. In particular unforeseen events (e.g. people and other obstacles that are not stationary) can cause problems or collisions. Some highly advanced robots as ASIMO, EveR-1, Meinü robot have particularly good robot navigation hardware and software. Also, self-controlled cars, Ernst Dickmanns' driverless car, and the entries in the DARPA Grand Challenge, are capable of sensing the environment well and subsequently making navigational decisions based on this information. Most of these robots employ a GPS navigation device with waypoints, along with radar, sometimes combined with other sensory data such as LIDAR, video cameras, and inertial guidance systems for better navigation between waypoints.

[edit] Human-robot interaction

Kismet can produce a range of facial expressions.

If robots are to work effectively in homes and other non-industrial environments, the way they are instructed to perform their jobs, and especially how they will be told to stop will be of critical importance. The people who interact with them may have little or no training in robotics, and so any interface will need to be extremely intuitive. Science fiction authors also typically assume that robots will eventually be capable of communicating with humans through speech, gestures, and facial expressions, rather than a command-line interface. Although speech would be the most natural way for the human to communicate, it is unnatural for the robot. It will probably be a long time before robots interact as naturally as the fictional C-3PO.

[edit] Speech recognition

Interpreting the continuous flow of sounds coming from a human, in real time, is a difficult task for a computer, mostly because of the great variability of speech.[82] The same word, spoken by the same person may sound different depending on local acoustics, volume, the previous word, whether or not the speaker has a cold, etc.. It becomes even harder when the speaker has a different accent.[83] Nevertheless, great strides have been made in the field since Davis, Biddulph, and Balashek designed the first "voice input system" which recognized "ten digits spoken by a single user with 100% accuracy" in 1952.[84] Currently, the best systems can recognize continuous, natural speech, up to 160 words per minute, with an accuracy of 95%.[85]

[edit] Robotic voice

Other hurdles exist when allowing the robot to use voice for interacting with humans. For social reasons, synthetic voice proves suboptimal as a communication medium,[86] making it necessary to develop the emotional component of robotic voice through various techniques.[87] [88]

[edit] Gestures

One can imagine, in the future, explaining to a robot chef how to make a pastry, or asking directions from a robot police officer. In both of these cases, making hand gestures would aid the verbal descriptions. In the first case, the robot would be recognizing gestures made by the human, and perhaps repeating them for confirmation. In the second case, the robot police officer would gesture to indicate "down the road, then turn right". It is likely that gestures will make up a part of the interaction between humans and robots.[89] A great many systems have been developed to recognize human hand gestures.[90]

[edit] Facial expression

Facial expressions can provide rapid feedback on the progress of a dialog between two humans, and soon it may be able to do the same for humans and robots. Robotic faces have been constructed by Hanson Robotics using their elastic polymer called Frubber, allowing a great amount of facial expressions due to the elasticity of the rubber facial coating and imbedded subsurface motors (servos) to produce the facial expressions.[91] The coating and servos are built on a metal skull. A robot should know how to approach a human, judging by their facial expression and body language. Whether the person is happy, frightened, or crazy-looking affects the type of interaction expected of the robot. Likewise, robots like Kismet and the more recent addition, Nexi[92] can produce a range of facial expressions, allowing it to have meaningful social exchanges with humans.[93]

[edit] Artificial emotions

Artificial emotions can also be imbedded and are composed of a sequence of facial expressions and/or gestures. As can be seen from the movie Final Fantasy: The Spirits Within, the programming of these artificial emotions is complex and requires a great amount of human observation. To simplify this programming in the movie, presets were created together with a special software program. This decreased the amount of time needed to make the film. These presets could possibly be transferred for use in real-life robots.

[edit] Personality

Many of the robots of science fiction have a personality, something which may or may not be desirable in the commercial robots of the future.[94] Nevertheless, researchers are trying to create robots which appear to have a personality:[95][96] i.e. they use sounds, facial expressions, and body language to try to convey an internal state, which may be joy, sadness, or fear. One commercial example is Pleo, a toy robot dinosaur, which can exhibit several apparent emotions.[97]

[edit] Control

A robot-manipulated marionette, with complex control systems

The mechanical structure of a robot must be controlled to perform tasks. The control of a robot involves three distinct phases - perception, processing, and action (robotic paradigms). Sensors give information about the environment or the robot itself (e.g. the position of its joints or its end effector). This information is then processed to calculate the appropriate signals to the actuators (motors) which move the mechanical.

The processing phase can range in complexity. At a reactive level, it may translate raw sensor information directly into actuator commands. Sensor fusion may first be used to estimate parameters of interest (e.g. the position of the robot's gripper) from noisy sensor data. An immediate task (such as moving the gripper in a certain direction) is inferred from these estimates. Techniques from control theory convert the task into commands that drive the actuators.

At longer time scales or with more sophisticated tasks, the robot may need to build and reason with a "cognitive" model. Cognitive models try to represent the robot, the world, and how they interact. Pattern recognition and computer vision can be used to track objects. Mapping techniques can be used to build maps of the world. Finally, motion planning and other artificial intelligence techniques may be used to figure out how to act. For example, a planner may figure out how to achieve a task without hitting obstacles, falling over, etc.

[edit] Autonomy levels

Control systems may also have varying levels of autonomy.

  1. Direct interaction is used for haptic or tele-operated devices, and the human has nearly complete control over the robot's motion.
  2. Operator-assist modes have the operator commanding medium-to-high-level tasks, with the robot automatically figuring out how to achieve them.
  3. An autonomous robot may go for extended periods of time without human interaction. Higher levels of autonomy do not necessarily require more complex cognitive capabilities. For example, robots in assembly plants are completely autonomous, but operate in a fixed pattern.

Another classification takes into account the interaction between human control and the machine motions.

  1. Teleoperation. A human controls each movement, each machine actuator change is specified by the operator.
  2. Supervisory. A human specifies general moves or position changes and the machine decides specific movements of its actuators.
  3. Task-level autonomy. The operator specifies only the task and the robot manages itself to complete it.
  4. Full autonomy. The machine will create and complete all its tasks without human interaction.

[edit] Robotics research

Much of the research in robotics focuses not on specific industrial tasks, but on investigations into new types of robots, alternative ways to think about or design robots, and new ways to manufacture them but other investigations, such as MIT's cyberflora project, are almost wholly academic.

A first particular new innovation in robot design is the opensourcing of robot-projects. To describe the level of advancement of a robot, the term "Generation Robots" can be used. This term is coined by Professor Hans Moravec, Principal Research Scientist at the Carnegie Mellon University Robotics Institute in describing the near future evolution of robot technology. First generation robots, Moravec predicted in 1997, should have an intellectual capacity comparable to perhaps a lizard and should become available by 2010. Because the first generation robot would be incapable of learning, however, Moravec predicts that the second generation robot would be an improvement over the first and become available by 2020, with an intelligence maybe comparable to that of a mouse. The third generation robot should have an intelligence comparable to that of a monkey. Though fourth generation robots, robots with human intelligence, professor Moravec predicts, would become possible, he does not predict this happening before around 2040 or 2050.[98]

The second is Evolutionary Robots. This is a methodology that uses evolutionary computation to help design robots, especially the body form, or motion and behavior controllers. In a similar way to natural evolution, a large population of robots is allowed to compete in some way, or their ability to perform a task is measured using a fitness function. Those that perform worst are removed from the population, and replaced by a new set, which have new behaviors based on those of the winners. Over time the population improves, and eventually a satisfactory robot may appear. This happens without any direct programming of the robots by the researchers. Researchers use this method both to create better robots,[99] and to explore the nature of evolution.[100] Because the process often requires many generations of robots to be simulated,[101] this technique may be run entirely or mostly in simulation, then tested on real robots once the evolved algorithms are good enough.[102] Currently, there are about 1 million industrial robots toiling around the world, and Japan is the top country having high density of utilizing robots in its manufacturing industry.

[edit] Dynamics and kinematics

The study of motion can be divided into kinematics and dynamics. Direct kinematics refers to the calculation of end effector position, orientation, velocity, and acceleration when the corresponding joint values are known. Inverse kinematics refers to the opposite case in which required joint values are calculated for given end effector values, as done in path planning. Some special aspects of kinematics include handling of redundancy (different possibilities of performing the same movement), collision avoidance, and singularity avoidance. Once all relevant positions, velocities, and accelerations have been calculated using kinematics, methods from the field of dynamics are used to study the effect of forces upon these movements. Direct dynamics refers to the calculation of accelerations in the robot once the applied forces are known. Direct dynamics is used in computer simulations of the robot. Inverse dynamics refers to the calculation of the actuator forces necessary to create a prescribed end effector acceleration. This information can be used to improve the control algorithms of a robot.

In each area mentioned above, researchers strive to develop new concepts and strategies, improve existing ones, and improve the interaction between these areas. To do this, criteria for "optimal" performance and ways to optimize design, structure, and control of robots must be developed and implemented.

[edit] Education and training

The SCORBOT-ER 4u - educational robot.

Robots recently became a popular tool in raising interests in computing for middle and high school students. First year computer science courses at several universities were developed which involves the programming of a robot instead of the traditional software engineering based coursework.

[edit] Career training

Universities offer Bachelors, Masters and Doctoral degrees in the field of robotics. Select Private Career Colleges and vocational schools offer robotics training to train individuals towards being job ready and employable in the emerging robotics industry.

[edit] Certification

The Robotics Certification Standards Alliance (RCSA) is an international robotics certification authority who confers various industry and educational related robotics certifications.

[edit] Employment

A robot technician builds small all-terrain robots. (Courtesy: MobileRobots Inc)

Robotics is an essential component in any modern manufacturing environment. As factories increase their use of robots, the number of robotics related jobs grow and have been observed to be on a steady rise.

[edit] Effects on unemployment

Some analysts, such as Martin Ford,[103] argue that robots and other forms of automation will ultimately result in significant unemployment as machines begin to match and exceed the capability of workers to perform most jobs. At present the negative impact is only on menial and repetitive jobs, and there is actually a positive impact on the number of jobs for highly skilled technicians, engineers, and specialists. However, these highly skilled jobs are not sufficient in number to offset the greater decrease in employment among the general population, causing structural unemployment in which overall (net) unemployment rises.

As robotics and artificial intelligence develop further, some worry even many skilled jobs may be threatened. In conventional economic theory this should merely cause an increase in the productivity of the involved industries, resulting in higher demand for other goods, and hence higher labour demand in these sectors, off-setting whatever negatives are caused. Conventional theory describes the past well but may not describe the future due to shifts in the parameter values that shape the context (see Automation and its effects on unemployment).

Author:Bling King
Published:Sep 24th 2011
Modified:Jan 10th 2012
Please Sign In to Add a Comment
or

 

 

Add Member

Add video

Add a Chat Room

Add Photos

Add Website Link

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Alcatraz

In Room: 0
The prison
 

 

 

 

California

In Room: 0
Welcome
 

CONCERT

In Room: 0
This is the video room for all online live concerts
 

Darrell on camera

In Room: 1
video messanger with Darrell here.
 

General Chat

In Room: 0
 

Gillian Howards

In Room: 0
A place to chat with me.
 

Grand Canyon

In Room: 0
Thee Grand Canyon
 

Ground Zero, New York City

Harvard University

In Room: 0
 

Jamie Perrins

In Room: 0
This is a place to talk with me.
 

Jessica Mott

In Room: 0
Talk to me here.
 
Categories

:
:
:

Image result for banner ad

Image result for banner ad                                        Image result for banner adImage result for banner ad                                 Image result for banner ad

Voting Poll
:
There is no such thing as time
Posted by Bling King

    

     Upon further ponderance I have come to the conclusion that time does not exist except in the law of physics. I have come to this conclusion through the observation of how things change and why they change at the pace in which they change. To me it seems that every change that takes place  in the universe is not dictated by time but rather physics. It is the law of physics that dictates the rate and speed at which all things change. For example if you have a car  that is traveling at 100 miles an hour the speed at  which the car travels is all dictated by physical changes and therfor controlled by the law of physics..Therfor it seems that for any change to take place all you need is physics and the law of physics that governs the physical changes. Time does not need be a factor and bears no relavance. As long as we have the law of physics everything will happen in accordance with those laws.

The composition of time
Posted by Bling King

   

    Time has 3 components. A front a middle and a rear. In the front time has what appears to be something of perspectual perspectualness that will move things forward at a set forth proponent. This part of time is easy to see and witness. However it is not easy to predict at which point time will make forward momentum happen. It would seem that this forward momentum is always in inactment but I would disagree with this. To me it seems more as if time interacts with things on its own accord leaving somethings unchanged for long standing periods of time. An example of this would be how time occasionally interacts with the speed of light. The speed of light remains constant but occasionally time will manifest itself into the equation and make modifications of the speed that light travels. For instance light will move forward forthwittingly at a billion miles a second but if it encounters any kind of resistance then time will inject itself and change the speed at which it was moving. Which leads me to the assumption that in order for time to inject itself into any equation a proponent has to take place that makes a physical change that would cause time to interject itself. If no physical change takes place than time has also not been a factor.

    The middle proponent of time is the area in which time is manipulating  the change that takes...Read More

👄What turns me on
Posted by Bling King

    I get turned on by some funny stuff. I'm not really into like full blown kinkiness or at least I wouldn't consider myself to be a kinky person but I do have a few fetishes. Some of them are a little out of the ordinary. For instance I have this one fetish about being tied up  and thrown in the ocean and then rescued by a mermaid. I think this fantasy comes from when I was a kid and I used to dream of mermaids and always wanted to meet one. Well one day its gonna happen. Now don't go telling me mermaids don't exist. You don't know cause they are in fact real and as soon as I meet one I will prove it to you. As far as some of my other turn ons  I guess what really gets me excited is people who  tell other people to shut the fuck up. I love when a woman just looks at a man and tells him to shut his mouth. To me thats a big turn on because the woman seems assertive like a dominatrix or something. If she will be assertive in a conversation she will be assertive in the bedroom or so I  would like to believe.

Time is a dialectable derelict
Posted by Bling King

To fathom the fortrighteousness of time one has to contemplate the personification of forthwittial forthwittil. Time forthwittingly will only listen to the commands of its on inner personification to which there is no directional direction or so it would seem but on further inquisitories I have come to realize that there is a forthwittingly forthwittal of which time has pronounced and those commands seem to speak to the nature of to which time corresponds. To review these pronouncements for your own bemusement look at time as if you had it captured it  in a bottle. What would happen? We know on the inside of the bottle time would force the inner workings of the bottle to correspond to times diabolical commands. Causing everything to change to times everlescent rules. however on the outside of the bottle things would not change, everything would stay in constant neutrality or would it? The question remains if there was no time would things still be allowed to happen and if so at what pace and what would dictate the pace at which things would change. There seems to be no rule in place for the dictation of the pace change which takes place. So it would seem that time has decided that factor somehow within itself. There could be a correlation at which things change and the pace being dictated by physics and the amount the physical world can be allowed to change within its own accord of set boundaries. To actually find...Read More

Free from time constraints
Posted by Bling King

 

 

 

There was a time when time did not matter. The thing that was an utmost relevance now was of no matter. The diffrence it made seemed miniscule and now it is constantly dictating everything that takes place before me. What is this thing that controls and makes everything manifest itself to its constraints and why and how does it do this. Time is nothing but the utmost miracle before us. Something that has always had to exist for anything ever to take place. There is no changing its course there is no variance in its absolute everlasting existance. To control time would be the utmost  crown jewel of all accomplishments if indeed it could ever be controlled. The only way I ever see time being manipulated to change its values is to speed up everything that time has interacted with. In order to do such a thing you would have to understand the nature of the objects in question and how they are effected by time. For instance a speeding car will slow down in time without constant force being distrubuted by the engine. To slow down the car one only has to take their foot off the accelarator and gradually time will do the rest but if you could freeze time at the speed at which the car was traveling then time would not  exist because the...Read More

the truth about time
Posted by Bling King

        I have looked at time many times and I have noticed a few components. There is a precise proponent that ushers in a manifestation. Whenever something new is going to happen you can look at that event which is about to take place and precisely predict exactly when it has started. Once you realize a manifestation has taken place you can precisely predict its out come. If you know that a manifestation has started to take place then you will know you are being guided through the realm precisely by the forces of an enlightenment. Throughout time this manifestation will remain constant starting with a beginning and an end and ending in a preconcieved enlightenment. Sometimes an enlightenment can take weeks and some times an enlightenment can take centuries. It depends on how many times that enlightenment has been benounced to the realm. 

 

nothing
Posted by Bling King

I suspect a suffcient of sufficence of suffiacantel suffiance of suffiance of absurdity of absurdanace. In all actual actuality there is an  actual actuality of actualityness in retrospect to the retorospective respect in which every person who has an intellectual intellect can see that the world is a prominance of prominance in which the order will reside as long as the order is maintained. Once that order is relinquished chaos will ensue. For chaos to be a calamity there only needs to be a perspectual perspective of perspectance that escalates the chaos to that height. What would cause that is a person or persons in the realm of the realmatical realmatics looking beyond thier own existance to the existance of there forfathers to see what has become of thier existance. If you look at your own existance for what it is you will see that it is neither logical nor illogical for it makes all the sense of a sensimatical sensematic. As long as you have a reason for your own existance then it is fruitful for you to exist. Once that reason or reasons are gone you will no longer care whether it is you live or die. In the realm in which we live is a prospectus prospectant of prospectantin which all will ensue. To change the prospectus prospectus you need to look to the realm and see what the prospectus prospectant is and manifest it to your own liking. My...Read More

The conclusive conclusion
Posted by Bling King

In all actual reality the realm is manifested of certain procedural procedures that come forth frequently to forthrightous forthrightenous. In the place of predicament I have found that I can properly place things in the procedural sequence unbenowst to people of the realm. In order to conflict the conflictions you have to equate the equation of equationalness in to proper equations. Very simple but also very tedious. You do this by equating the equation into percise preciseness. An example of an equation would be a placement of perdicament of a certain event in which you wish it to be. The next manifestation I could manifest is a manifestual manifestation of manifests of a sequance of certainal circumstances. Put together a sequence by asking the sequence in order to manifest itself and then tell the manifestations to happen in frequence in which they will unfold.

The Unattainable future
Posted by Bling King

     If the future is a grain of sand and its falling through an hour glass nothing in the world can stop it. It will eniquivaocalby blind as to where its going when it comes to its rest it has befallen its fate and will remain where it lay for an eternity knowing nothing about itself or it's surroundings. I am that grain of sand. Nothing ever can change my destiny for only time here makes a diffrence.. To benounce the future is the only way to change ones fortune. The time it takes to make an equivical change remains the utmost mystery of the universe.

🤯In the eyes of myself
Posted by Bling King

 

 

There where three men. All who seemed frightened. They stood on the edge of the canyon looking on as a fourth man tumbled to his death. We could have saved him said one of the men. He should have saved himself said another. The third man just look at them bewildered and brought a handgun to his own head and pulled the trigger. Blood spattered. The two men watched as he slumped to the ground. The first man screamed and the second threw himself to the side of the man on the ground. Why?!! he screamed. It was the only sound heard. Sobbing he looked at the man standing and said you did this! You and your frigging righteous speech about the lives we leave and the sacrifice we must make. Your the devil. I am not the devil said the standing man only the truth. The truth about what? The other man screamed. Your life he said and he jumped.

The man heard a ringing and he sat up slowly. It was over the dream but his thoughts where still on the side of the canyon. How did this happen. How did it all just fade away? The dream came and went in an instant leaving his mind boggled and his eyes heavy. I knew I was there thought the man but how? It was all to familiar the...Read More

The story Elijah and Ellen
Posted by Bling King

The story of Elijah and Ellan. This is the story of Elijah and Ellan. Ellan is a beutiful temptress and Elijah is a dutiful servant of Ellan's. Together the pair fell in love and soon became a duo of in excessible excession. They frolicked in the sun under the rare occurance of rain they took shelter in the arms of each other. One day while hiding from the glares of the sun under an oak tree that provided an abundance of shade they looked into each others souls and realized there where no people suited for each other then the two of them where suited for each other. They basked in the notion that they where the most two compatible souls on the planet. As they where thinking this a giant unforseen acclamaited acclamation occurred. The planet began to tremble and shake beneath them and the stars came out. The sun hid amongst the clouds and everything from start to finish began to take shape. There where huge explosions and giant surges of wind and rain. The two began to run for their shelter knowing at the exact moment the trembling and violent agressions of unacclaimated weather started that they most likely wouldn't make it to see another sunrise. The planet was exploding with molten lava and the tempertures where unbearable as for the two of them could remember they had never seen a winter climate and didn't expect they ever would. The planet had been warming out of...Read More

today was a day of dismal despair
Posted by Bling King

Things have gone down hill drastically now for a very long time. We seem to be some what defeated but yet i know we still have some power and prominance. We are fighting an up hill battle and there is no way forward from here from what i can see. We are trudging along a path that goes nowhere.

⚔️The Greatest Warrior of All Time
Posted by Bling King

 

 

Today i conquered and beat all adverseries there where to beat. Tomorrow new adversaries will arise. I will be ready, there is never a shortage of enemies who wish to dethrone me from the top of the world. I didn't get here by being passive and yeilding to the oppostion. I got here by defeating them both mentally and physically and in entiriety.

In a time of desilute despair
Posted by Bling King

     There was a time when I was in desilute despair. The only thing I had was me myself and I to fall back on. I looked at the person who was my opponent and I knew one of  us was going to die and I was going to do everytrhing I could to make dam sure it wasn't me. I pulled my six shooter from its holster and aimed at the guy looking at me  about 30 yards away. He also went for his gun and in lightning speed he was laid sprawled out on the dirt bleeding and moaning. I had heard a shot but new that it had come from my own gun. He never even got a shot off. I was unscathed and again undeafeted. Anybody who ever tried to kill me was dead and their where over 30 who had tried and failed to kill yours truly.

Gravity
Posted by Bling King

Gravity is the force of nature that pulls cellestrial bodies toward one another. The cause of gravity is the enertia of a bodies movement through space and time. This happens by an object preconcievably traveling through the cosmos at an alarming rate of acceleration. The faster an object travels the more enertia it will build up and then will therefore have a greater ability to move. the more it moves the more other objects will cling to it. the way this can be proved is by taking an object and hurtling it towards another object the two objects would collide do to the enertia pulling them towards each other. Thy would not stay on their current trajectory but their paths would alter towards one another in a greater force than their initial gravitational pull. the best test to accomodate this theory would be tow baseballs flying through the air at speeds over one hundred miles an hour. The baseballs would not interject themselves with one another normally but at this speed would do so do to the balls enertia pulling them towards one another.

:
 

 

Click Here To Buy A Million Secondlife  Avatar Names With UUID Keys List

How to post a website

To post a website to Ning Spruz add this line of code:

 

<p style="text-align: center;"><iframe frameborder="0" height="2000" scrolling="yes" src="https://useme.org/" width="1273"></iframe></p>

 

to the Youtube embed box and change the URL.

 

 

 

:

 

 

:

 

Make money online

   

 
:
Best Writing Blogs On The Internet https://the-nbafinals.com/ Indy 500 Live ESPN FOX CBS NBC SKY SHOWTIME PPV HBO REDDIT https://glasgowvsleinster.blogspot.com/ (*^[FULL]&%) https://livemlbonline.com
Added by sweetunclejim
Jul 12th 2013
http://www.pickwellnessdeal.com/forskolin-keto-cycle/ Been working out my butt at the gym. Hey I hope you like my bikini picture. Please comment. Antique slot machine
Added by Bling King
Mar 26th
Added by SweetRachael
Oct 22nd 2014
nice car..
Added by Bling King
Sep 15th 2012
nice!
Added by Bling King
Sep 15th 2012
cute
Added by Bling King
Sep 15th 2012
whats the question?
Added by Bling King
Sep 12th 2012
sexy
Added by Bling King
Sep 12th 2012
Whatcha think?
Added by Bling King
Aug 29th 2012
What do you think of my car?
Added by Bling King
Aug 29th 2012
Please Message US For Details. please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
please comment
Added by Bling King
Aug 29th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
obama
Added by Bling King
Aug 16th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
I LOVE YOU!
Added by Bling King
Aug 14th 2012
AWESOME!
Added by Bling King
Aug 14th 2012
awesome!
Added by Bling King
Aug 14th 2012
awesome!
Added by Bling King
Aug 14th 2012
atari
Added by Bling King
Aug 14th 2012
whoa!
Added by Bling King
Aug 9th 2012
You can do it!
Added by Bling King
Aug 9th 2012
Girls girls girls
Added by Bling King
Aug 9th 2012
Hott!
Added by Bling King
Aug 7th 2012
Howard Stern
Added by Bling King
Mar 16th 2012
Harley
Added by Bling King
Mar 3rd 2012
Range Rover
Added by Bling King
Feb 23rd 2012
Hummer
Added by Bling King
Feb 23rd 2012
Added by Bling King
Feb 21st 2012
Bentley C
Added by Bling King
Sep 25th 2011
Attraction
Added by Bling King
Mar 3rd 2013
beatles image
Added by Bling King
Mar 3rd 2013
attraction
Added by Bling King
Mar 3rd 2013
cool image
Added by Bling King
Mar 3rd 2013
pyramid
Added by Bling King
Mar 3rd 2013

This website is powered by Spruz

Live Support